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Preface

Randomized controlled trials are rightly seen as the key means by which new
treatments and interventions are evaluated for their safety and efficacy. There are
now more randomized trials being undertaken and published than ever before –
they provide the cornerstone of evidence-based medicine in current practice.

Hence, more and more people from a broad range of professional backgrounds
need to understand the essentials of clinical trials as regards their design, statistical
analysis, and reporting. This book is an admirable venture, in that it covers this
whole field at a level of methodological detail that gives a good working knowledge
of the subject. At the same time, it avoids undue technicalities or jargon so that even
those with little or no previous knowledge of statistics, study design, or reporting
practices will be able to follow all of the material presented.

The book’s structure, with 38 chapters grouped into five broad sections, helps the
reader to focus on one specific topic at a time, and should also make it a useful
text to accompany taught courses in clinical trials.

The book represents a well-balanced account of clinical issues and statistical
methods, which are clearly explained and illustrated with relevant examples
throughout. The book also contains over 300 references, facilitating a more 
in-depth pursuit of each topic if desired. Overall, I think this book is an excellent
contribution, which I recommend as a rewarding read for anyone interested in
clinical trials and their methods.

Professor Stuart Pocock, PhD
Medical Statistis Unit
London School of Hygiene & Tropical Medicine
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Introduction

The inspiration…

Over 7 years ago, while working on design and analyses of projects conducted 
at the Clinical Trials and Evaluation Unit at the Royal Brompton Hospital,
London, a young clinician and statistician began what was to become a long
journey together into clinical trials. We were fortunate to meet Andrew Ward,
Publisher from Remedica, along the way, and our journey culminated in the
creation of this book – initially starting with short 500-word articles explaining
concepts such as P-values and confidence intervals, and concluding in 5,000 word
articles explaining multicenter studies and meta-analyses. 

Along the way, we have published more than 30 peer-reviewed and invited papers
with others, continually building our writing style to be able to appeal to clinicians,
statisticians, and trial workers alike. This book is therefore unique in that it
quickly demystifies and brings the language of clinical trials within reach of all.

The audience…

This book describes and explains the issues that occur during all stages of clinical
trials, covering design, analysis, and reporting of clinical trials, with an emphasis
on open, practical, and effective communication. The material is therefore ideal
for those involved in designing, conducting, analyzing, evaluating, interpreting, 
or publishing clinical trials – including physicians, medical students, clinical 
and medical researchers, study co-ordinators, project managers, medical writers,
data managers, pharmaceutical scientists, statisticians, medical economists,
medical analysts, and those working in the health services who have to evaluate
such material. 

The material…

Our book consists of 38 chapters in five sections: fundamentals of trial design,
alternative trial designs, basics of statistical analysis, special trial issues in data
analysis, and reporting of trials. The chapters can be read consecutively or
individually, with Chapter 1 providing an overview and some reading guidelines. 
To hold interest, the chapters are scattered with numerous practical examples 
of concepts and illustrations relating to trials, and there are even chapters
enabling one to become a polished trial sceptic. The chapters on tables and figures
are essential for those submitting their reports for regulatory approval or for
publication, and the statistical chapters provide step-by-step guidance on which
tests to use.
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The clincher…

More importantly, most chapters can be read in 30 minutes – essential for
commuters, those who like to read during lectures or lunch breaks, and those 
who might need to fall asleep on a book. Even more appealing is that the 5 hours
it often takes to cross the Atlantic give you enough time to land as a smarter
conference delegate after digesting key sections of this book.

Duolao Wang
Ameet Bakhai
Editors
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1

Randomized 

Clinical Trials

Duolao Wang, Dorothea Nitsch, 

and Ameet Bakhai

Randomized clinical trials are scientific investigations that
examine and evaluate the safety and efficacy of new drugs or
therapeutic procedures using human subjects. The results that
these studies generate are considered to be the most valued
data in the era of evidence-based medicine. Understanding 
the principles behind clinical trials enables an appreciation 
of the validity and reliability of their results. In this chapter, 
we describe key principles and aspects of clinical trial design,
analysis, and reporting. We also discuss factors that might lead
to a biased study result, using a contemporary clinical trial 
to illustrate key concepts. Throughout, the reader is referred 
to later chapters that offer more detailed discussions.

■■❚❙❘ Chapter 1
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❘❙❚■ Chapter 1 | Randomized Clinical Trials

2

What is a randomized clinical trial?

A clinical trial evaluates the effect of a new drug (or device or procedure) on
human volunteers. These trials can be used to evaluate the safety of a new drug in
healthy human volunteers, or to assess treatment benefits in patients with a
specific disease. Clinical trials can compare a new drug against existing drugs or
against dummy medications (placebo) or they may not have a comparison arm
(see Chapter 2). A large proportion of clinical trials are sponsored by
pharmaceutical or biotechnology companies who are developing the new drug,
but some studies using older drugs in new disease areas are funded by health-
related government agencies, or through charitable grants. 

In a randomized clinical trial, patients and trial personnel are deliberately kept
unaware of which patient is on the new drug. This minimizes bias in the later
evaluation so that the initial blind random allocation of patients to one or other
treatment group is preserved throughout the trial. Clinical trials must be designed
in an ethical manner so that patients are not denied the benefit of usual
treatments. Patients must give their voluntary consent that they appreciate the
purpose of the trial. Several key guidelines regarding the ethics, conduct, and
reporting of clinical trials have been constructed to ensure that a patient’s rights
and safety are not compromised by participating in clinical trials [1–3].

Are there different types of clinical trials?

Clinical trials vary depending on who is conducting the trial. Pharmaceutical
companies typically conduct trials involving new drugs or established drugs in
disease areas where their drug may gain a new license. Device manufacturers use
trials to prove the safety and efficacy of their new device. 

Clinical trials conducted by clinical investigators unrelated to pharmaceutical
companies might have other aims. They might use established or older drugs in
new disease areas, often without commercial support, given that older drugs are
unlikely to generate much profit. Clinical investigators might also:

• look at the best way to give or withdraw drugs
• investigate the best duration of treatment to maximize outcome
• assess the benefits of prevention with vaccination or screening programs

Thus, different types of trials are needed to cover these needs; these can be
classified under the following headings.

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 2
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3

Phases

The pharmaceutical industry has adopted a specific trial classification based on
the four clinical phases of development of a particular drug (Phases I–IV) [4–7].
In Phase I, manufacturers usually test the effects of a new drug in healthy
volunteers or patients unresponsive to usual therapies. They look at how the 
drug is handled in the human body (pharmacokinetics/pharmacodynamics),
particularly with respect to the immediate short-term safety of higher doses.
Clinical trials in Phase II examine dose–response curves in patients and what
benefits might be seen in a small group of patients with a particular disease. 

In Phase III, a new drug is tested in a controlled fashion in a large patient population
against a placebo or standard therapy. This is a key phase, where a drug will either
make or break its reputation with respect to safety and efficacy before marketing
begins. A positive study in Phase III is often known as a landmark study for a drug,
through which it might gain a license to be prescribed for a specific disease. 

A study in Phase IV is often called a postmarketing study as the drug has already
been granted regulatory approval/license. These studies are crucial for gathering
additional safety information from a larger group of patients in order to
understand the long-term safety of the drug and appreciate drug interactions. 

Trial design 

Trials can be further classified by design. This classification is more descriptive in
terms of how patients are randomized to treatment. The most common design is
the parallel-group trial [4,5]. Patients are randomized to the new treatment or to
the standard treatment and followed-up to determine the effect of each treatment
in parallel groups. Other trial designs include, amongst others, crossover trials,
factorial trials, and cluster randomized trials. 

Crossover trials randomize patients to different sequences of treatments, but all
patients eventually get all treatments in varying order, ie, the patient is his/her
own control (see Chapter 10) [8,9]. Factorial trials assign patients to more than
one treatment-comparison group. These are randomized in one trial at the same
time, ie, while drug A is being tested against placebo, patients are re-randomized
to drug B or placebo, making four possible treatment combinations in total 
(see Chapter 11). Cluster randomized trials are performed when larger groups 
(eg, patients of a single practitioner or hospital) are randomized instead of
individual patients (see Chapter 15).

Number of centers

Clinical trials can also be classified as single-center or multicenter studies according
to the number of sites involved. While single-center studies are mainly used for

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 3



Phase I and II studies, multicenter studies can be carried out at any stage of
clinical development (see Chapter 16). Multicenter studies are necessary for two
major reasons: 

• to evaluate a new medication or procedure more efficiently in terms 
of accruing sufficient subjects over a shorter period of time 

• to provide a better basis for the subsequent generalization of the 
trial’s findings, ie, the effects of the treatment are evaluated in many
types of centers

Other classifications

Trials can also be described as superiority studies, equivalence studies, or
noninferiority studies in terms of what the study was designed to prove. A superiority
study aims to show that a new drug is more effective than the comparative
treatment (placebo or current best treatment) [4]. Most clinical trials belong to
this category. On the other hand, an equivalence study is designed to prove that
two drugs have the same clinical benefit. Hence, the trial should demonstrate that
the effect of the new drug differs from the effect of the current treatment by a
margin that is clinically unimportant (see Chapters 12 and 13). A noninferiority
study aims to show that the effect of a new treatment cannot be said to be
significantly weaker than that of the current treatment (see Chapter 14). In the
latter two trials the new treatment might still turn out to be more effective than
the comparative treatment, but this is not the prior assumption of the trials. 

Clinical trials can also be classified by whether the trial is the first to compare 
a specific treatment (exploratory) or is a further trial trying to confirm a previous
observation (confirmatory) [10]. An exploratory study might also seek to identify
key issues rather than to confirm or challenge existing results regarding the
treatment effect. For example, it might look at the impact of a new drug in a
specific subset of patients who have additional diseases to the main disease of
interest, such as diabetic patients with heart disease. On occasions, a study can
have both confirmatory and exploratory aspects. For instance, in a confirmatory
trial evaluating a specific treatment, the data can also be used to explore further
hypotheses, ie, subgroup effects that have to be confirmed by later research.

Why might clinical trial results not represent the true difference?

In a clinical trial, the observed treatment effect regarding the safety and efficacy
of a new drug may represent the ‘true’ difference between the new drug and the
comparative treatment or it may not. This is to say that if the trial were to be
repeated with all the available patients in the world then the outcome would

❘❙❚■ Chapter 1 | Randomized Clinical Trials
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either be the same as the trial (a true result) or different (making the trial result
a chance event, or an erroneous false result). Understanding the possible sources
of erroneous results is critical in the appreciation of clinical trials. Reasons for
erroneous results fall into three main categories. 

• Firstly, the trial may have been biased in some predictable fashion. 
• Secondly, it could have been contaminated (confounded) by an

unpredictable factor. 
• Thirdly, the result might simply have occurred by random chance. 

Bias/systematic errors

Bias can influence a trial by the occurrence of systematic errors that are associated
with the design, conduct, analysis, and reporting of the results of a clinical trial.
Bias can also make the trial-derived estimate of a treatment effect deviate from its
true value (see Chapter 6) [4,5,11]. The most common types of bias in clinical
trials are those related to subject selection and outcome measurement. For example,
if the investigator is aware of which treatment a patient is receiving, it could affect
the way that he/she collects information on the outcome during the trial, or he/she
might recruit patients in a way that could favor the new treatment, resulting in 
a selection bias. 

In addition, exclusion of subjects from statistical analysis because of noncompliance
or missing data (see Chapter 30) could bias an estimate of the true benefit of a
treatment, particularly if more patients were removed from analysis in one group
than the other (see Chapter 22) [12]. Much of the advanced design strategies seek
to reduce these systematic errors. 

Confounding

Confounding represents the distortion of the true relationship between treatment
and outcome by another factor, eg, the severity of disease (see Chapter 26).
Confounding occurs when an extra factor is associated with both the outcome of
interest and treatment group assignment. Confounding can both obscure an existing
treatment difference and create an apparent difference that does not exist. 

If we divided patients into treatment groups based on inherent differences 
(such as mean age) at the start of a trial then we would be very likely to find the
benefit of the new treatment to be influenced by those pre-existing differences.
For example, if we assign only smokers to treatment A, only nonsmokers to
treatment B, and then assess which treatment protects better against cardiovascular
disease, we might find that treatment B performs better – but the benefit may be
due to the lack of smoking in this group. The effect of treatment B on
cardiovascular disease development would therefore be confounded by smoking. 

Clinical Trials: A Practical Guide  ■❚❙❘
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Randomization in conjunction with a large sample size is the most effective way to
restrict such confounding, by evenly distributing both known and unknown
confounding factors between treatment groups. If, before the study begins, we know
which factors may confound the trial then we can use randomization techniques
that force a balance of these factors (stratified randomization) (see Chapter 7). In the
analysis stage of a trial, we might be able to restrict confounding using special
statistical techniques such as stratified analysis and regression analysis (see Chapter 24).

Random error

Even if a trial has an ideal design and is conducted to minimize bias and confounding,
the observed treatment effect could still be due to random error or chance [4,5].
The random error can result from sampling, biologic, or measurement variation in
outcome variables. Since the patients in a clinical trial are only a sample of all possible
available patients, the sample might yet show a chance false result compared to the
overall population. This is known as a sampling error. Sampling errors can be reduced
by choosing a very large group of patients or by using special analytic techniques
that combine the results of several smaller studies, called a meta-analysis (see
Chapter 38). Other causes of random error are described elsewhere [5]. 

Statistical analyses deal with random error by providing an estimate of how likely
the measured treatment effect reflects the true effect (see Chapters 18–21).
Statistical testing or inference involves an assessment of the probability of obtaining
the observed treatment difference (or more extreme difference for an outcome),
assuming that there is no difference between treatments. This probability is often
called the P-value or false-positive rate. If the P-value is less than a specified critical
value (eg, 5%), the observed difference is considered to be statistically significant.
The smaller the P-value, the stronger the evidence is for a true difference between
treatments. On the other hand, if the P-value is greater than the specified critical
value then the observed difference is regarded as not statistically significant, and
is considered to be potentially due to random error or chance. The traditional
statistical threshold is a P-value of 0.05 (or 5%), which means that we only accept 
a result when the likelihood of the conclusion being wrong is less than 1 in 20, 
ie, we conclude that only one out of a hypothetical 20 trials will show a treatment
difference when in truth there is none. 

Statistical estimates summarize the treatment differences for an outcome in the
form of point estimates (eg, means or proportions) and measures of precision 
(eg, confidence intervals [CIs]) (see Chapters 18–21). A 95% CI for a treatment
difference means that the range presented for the treatment effect is 95% likely
to contain (when calculated in 95 out of 100 hypothetical trials assessing the same
treatment effect) the true value of the treatment difference, ie, the value we would
obtain if we were to use the entire available patient population.
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Finally, testing several different hypotheses with the same trial (eg, comparing
treatments with respect to different outcomes or for several smaller subpopulations
within the trial population) will increase the chance of observing a statistically
significant difference purely due to chance (see Chapter 29). Even looking at the
difference between treatments at many time points (interim analyses) throughout
the length of the trial could lead to a spurious result due to multiple testing 
(see Chapter 28) [13]. Therefore, the aim should always be to plan a trial in such
a way that the occurrence of any such errors is minimal (see Chapter 31). For the
reader it is also important to be able to appraise the trial publication or report,
to spot potential for such errors (see Chapter 37).

The CHARM program: an example of a randomized clinical trial

To design and analyze a clinical trial, one needs to ask several questions. For example:

• What are the objectives and endpoints of the study? 
• What patient population or disease is the drug meant to treat? 
• What criteria should be used to select patients eligible for the study? 
• How large should the sample size be so that the study will have enough

power to detect a clinically significant benefit? 
• How sure can we be about the observed treatment benefits and that 

they will reflect a genuine treatment difference with minimal influence
of systematic errors, confounding, or chance? 

We will use the CHARM (Candesartan in Heart failure – Assessment of Reduction
in Mortality and morbidity) trials to illustrate some of the main points that have
to be considered in trial design, analysis, and reporting [14–17]. Patients with
chronic heart failure (CHF) are at high risk of cardiovascular death and recurrent
hospital admissions. The CHARM program consisted of three independent, but
parallel, trials comparing the angiotensin receptor blocker candesartan to placebo
in terms of mortality and morbidity among patients with CHF. The three patient
populations enrolled (all with heart failure) were distinct but complementary, 
so that the effects of candesartan could be evaluated across a broad spectrum of
patients with heart failure.

Objectives and endpoints

A clinical trial should have clear objectives that are measured by endpoints
(see Chapters 3 and 4). The main objective of the CHARM program was to
determine whether the use of candesartan could reduce mortality and morbidity
in a broad population of patients with symptomatic heart failure. To test these
hypotheses, the primary endpoint was defined as the time from randomization to
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death from any cause in the total CHARM population [14]. In each component
trial, the primary endpoint was the time to the first occurrence of cardiovascular
death or emergency hospitalization for the management of CHF (accordingly, the
primary analysis of each component trial was based on this endpoint) [15–17].

It was ethically acceptable to perform this trial since there was not enough evidence
to support the use of candesartan in patients with CHF prior to this study. 
The objectives and the endpoints were clearly stated in advance, and conclusions
with respect to the effect of candesartan were based on these prespecified
objectives and endpoints. 

Study design

CHARM was a multicenter study consisting of three separate, two-arm,
randomized, double-blinded, placebo-controlled subtrials into which patients
were allocated depending on their left ventricular ejection fraction (strength of
their heart function) and background use of angiotensin-converting enzyme
(ACE) inhibitors at presentation [14–17]. Patients who had preserved left
ventricular function (left ventricular ejection fraction ≥40%) were randomly
allocated to either candesartan or placebo in the ‘CHARM-Preserved’ trial.
Patients who had left ventricular ejection fraction <40% were split into a further
two trials, depending on whether they had a known intolerance of ACE inhibitors
(‘CHARM-Alternative’ trial) or were already on an ACE inhibitor (‘CHARM-
Added’ trial). They were then randomized to candesartan versus placebo.

As demonstrated in the CHARM study, it is crucial to randomize patients to
minimize systematic bias or confounding at the start of the study (see Chapters 7
and 8). In order to later have valid estimates of the effect of candesartan in one of
these distinct patient populations with heart failure (preserved function, with or
without intolerance to ACE inhibitors) it was necessary to split patients into these
groups at the design stage.

Patient population

It should be noted that the results of a clinical trial can only be generalized to patients
who are similar to the study participants (see Chapter 5). The CHARM investigators’
aim was to assess candesartan in a broad spectrum of patients. Hence, the CHARM
study population consisted of symptomatic heart failure patients (New York Heart
Association class II–IV) aged ≥18 years, except those with recent major events or
a very poor prognosis (such as patients with myocardial infarction, stroke, or open
heart surgery in the previous 4 weeks, and any noncardiac disease judged likely to
limit 2-year survival) [14–17]. Due to the principle of not harming patients, the study
also excluded patients who presented with contraindications to treatment with
candesartan. All patients gave their written informed consent before being enrolled.
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Sample size calculation

The sample size calculation was used to minimize random error (see Chapter 9).
We call this process power calculation. The study needed sufficient ‘power’ to be
able to say something definitive about the effect of the treatment (relating to the
primary endpoints) so it was important to include a sufficient number of patients. 

A variety of rules exist on how to calculate the sample size for any given trial [18,19].
These are based on statistical models that take account of the recruitment of
patients into the trial and the type of statistical test to be used. Different formulas
are used depending on the trial design – conventional parallel-arm trials, cluster
randomized trials, factorial trials, and crossover trials – as well as on the type of
endpoint chosen, such as continuous outcomes (eg, average difference in blood
pressure after treatment), binary outcomes (eg, disease-related event), and time-
to-event or survival outcomes (eg, time to death) (see Chapter 17). 

In the CHARM program, the overall study was designed to address the question
of all-cause mortality [14]. The investigators assumed an annual overall mortality
in the placebo group of 8%. On that basis, the program of investigation had >85%
power to detect a 14% reduction in mortality at a significance level of 0.05, based
on the log-rank test [14]. Each component trial independently estimated its
respective sample size based on the anticipated event rate for the combined
outcome of cardiovascular death or admission to hospital for CHF [15–17].

Conduct of the trial

The CHARM component trials recruited patients from 618 sites in 26 countries,
with use of uniform procedures and management, and coordination via a single
central unit [14]. Between March 1999 and March 2001, 7,599 patients were
randomly assigned in a double-blind fashion to candesartan or matching placebo,
stratified by site and component trial, with randomization provided through
telephone to the central unit. The initial dose used was either 4 or 8 mg of the
study drug. The dose was increased or decreased in response to the patient’s
clinical status, and algorithms were provided as guidelines for the management of
hypotension or kidney dysfunction. 

After the titration, visits were scheduled every 4 months, with a minimum planned
duration of 2 years. Discontinuations because of patients’ preferences or physicians’
decisions were recorded, and these patients were followed-up for outcomes if
possible. All deaths and first CHF hospital admissions were adjudicated by an
endpoint committee (see Chapter 3). Neither doctors nor patients were able to
deduce which treatment was given before (‘allocation concealment’) or during the
course of the trial (‘blinding’) (see Chapter 8).
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Interim monitoring 

In the CHARM program, the assignment code of randomly assigned patients 
was held at an independent statistical center and an independent data and 
safety monitoring board (DSMB) was established to oversee the safety of patients
enrolled in the trial and to monitor trial progress [20]. It had access to all data
through the independent statistical center. Predefined stopping rules for efficacy
or safety concentrated on mortality from the overall trial program 
(see Chapter 31) [13]. 

A pharmaceutical company that has heavily invested in a trial has a considerable
interest in ensuring that the conduct of the trial does not jeopardize the likelihood
of a positive outcome of the trial, eg, that the drug of interest is safe and
efficacious. The use of an independent statistical center and a DSMB makes the
whole process more transparent as these groups have patient safety as their
primary concern. At predefined time points the existing data are therefore
analyzed by the independent statistical center and the results are discussed with
the DSMB. 

The DSMB has to make sure that the new drug that patients are taking is not
harmful. If, during the course of the trial, such evidence is found then the trial has
to stop (stopping for safety). This idea can also be turned around: if there is major
evidence for a beneficial effect of the new treatment before the planned end of the
trial then the trial also has to stop. This is called stopping for efficacy because there
is evidence of conclusive benefit of the treatment. Monitoring trial results is
ethically challenging and has to balance individual ethics with the long-term
interest in obtaining sufficient data [21].

Final data analysis 

Intention-to-treat analysis means that outcomes of patients who were randomized
but who subsequently discontinued or changed treatment are taken into account
as if they had finished the trial (see Chapter 22). This is a pragmatic realization of
the view that at the time of treatment start we will never be sure whether a patient
will continue with that treatment. Hence, the intention-to-treat analysis reflects
the general policy of using/prescribing the treatment in a given situation 
(ie, inclusion criteria). 

All analyses in the CHARM program were done by intention-to-treat, and 
P-values were two-sided (see Chapter 18). All time-to-event endpoints were
analyzed with the log-rank test, stratified by three substudies and displayed on
Kaplan–Meier plots by treatment. The estimated hazard ratio from the Cox
proportional hazards model was used to assess the size of treatment effect
(candesartan against placebo) (see Chapter 21). In addition, a covariate-adjusted
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Cox regression model was fitted with the prespecified 33 baseline covariates 
to adjust the hazard ratio for other factors that might affect prognosis 
(see Chapters 24 and 25). Prespecified subgroup analyses were done, each using
a test for heterogeneity to assess for possible interactions between treatment and
selected baseline variables (see Chapters 23 and 27). These elements will be
discussed in more detail in later chapters.

Statistical analyses are usually prespecified in the trial protocol and should be
performed as planned to ensure credibility and to deal with the issue of multiple
testing (see Chapter 29) [22]. The principal statistical test for the primary
endpoint analysis that was prespecified in the sample size calculation should be
applied [4,5]. This means that it is imperative to plan a trial with care and to use
current evidence that is as rigorous as possible in order to avoid as much bias 
as possible at the planning stage. Subgroup analysis can be performed, but it 
has to be recognized that a significant effect seen in a subgroup is not definitive
evidence of a differential effect within subgroups of patients, unless the trial was
powered initially to assess this (see Chapter 23) [22]. 

CHARM was designed and powered to assess separately the effects of candesartan
on cardiovascular death or CHF hospitalization in different populations of patients
with heart disease (CHARM-Preserved, -Added, -Alternative). In contrast, it was
not designed to assess whether there was a differential effect of candesartan in
diabetic participants compared to other patients with heart failure. 

Trial reporting

The eventual results of the CHARM program were published in four 
reports [14–17], which followed the CONSORT (Consolidated Standards of
Reporting Trials) statement and guidelines of reporting (see Chapter 32) [2,3]. 
A trial profile was provided to describe the flow of participants through each 
stage of the randomized controlled trial (enrollment, randomization, treatment
allocation, follow-up, and analysis of a clinical trial) (see Chapter 33). The
baseline characteristics of patients (including demographic information, heart
disease risk factors, medical history, and medical treatment) were displayed in 
an appropriate format for each component trial as well as the overall program
(see Chapter 34). These tables showed that the subtrials and the overall trial 
were comparable in terms of the patients’ characteristics, making the estimates of
unadjusted hazard ratio reliable. 

The results with respect to the prespecified primary endpoints and relevant
secondary endpoints were provided in appropriate tables and figures (see
Chapters 35 and 36). For example, the main results were: 7,599 patients were
followed for at least 2 years with a median follow-up time of 37.7 months. During
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the study, 886 patients (23%) in the candesartan group and 945 (25%) in the
placebo group (as predicted, 8% annual mortality) died from any cause
(unadjusted hazard ratio 0.91 [95% CI 0.83, 1.00], P = 0.055), with fewer
cardiovascular deaths (691 [18%] vs 769 [20%], unadjusted hazard ratio 0.88 [0.79,
0.97], P = 0.012) in the candesartan group. It was concluded that treatment of a
broad spectrum of patients with symptomatic heart failure with candesartan
resulted in a marginally significant reduction in deaths, notably because of a
significant 12% hazard reduction in cardiovascular deaths [14]. Results on the
effects of candesartan on cardiovascular death or CHF hospitalization in different
populations of patients with heart disease (CHARM-Preserved, -Added, and -
Alternative) were reported in three separate articles [15–17]. 

Conclusion 

Randomized clinical trials are a major investment in terms of patient and
personnel involvement, and the funding needed to undertake the trial for the
progress of medical care. We have provided a short overview on the various types
of clinical trials, and the main types of errors that can arise and can seriously
compromise our ability to draw valid conclusions from clinical trials. 

Many of the concepts mentioned in this chapter deal with minimizing bias and
maximizing precision. An appropriate design requires a clear definition of the
primary and secondary hypotheses in terms of measured outcomes and an explicit
definition of the study population in order to avoid systematic errors. Statistical
analyses deal with random errors due to sampling or random variation in the
outcome variables. Interpretation of these statistical measures of treatment effect
and comparisons should consider the potential contribution of bias or
confounding. Finally, it is ethically imperative that a trial is conducted and
monitored in such a way as to minimize harm to patients, while looking to answer
the initial questions posed by the trial of whether the new treatment is better,
worse, or similar to the comparison group. 
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Uncontrolled Trials

Joseph Kim, Dorothea Nitsch, Duolao Wang,

and Ameet Bakhai

Uncontrolled clinical trials are defined as clinical studies 
where new treatments are studied in the absence of a control
group. As a result, these studies provide less information on
the therapy than controlled trials. Nonetheless, uncontrolled
trials play an integral part in the evaluation of novel therapies,
particularly in the early stages of clinical research where 
they are used to help justify and plan large-scale clinical 
trials. In this chapter, we review the merits and limitations 
of uncontrolled trials, and describe their potential usefulness 
in clinical research.

■■❚❙❘ Chapter 2
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Introduction 

Clinical trials form the basis for evidence-based medicine. The primary aim of
most clinical trials is to provide an unbiased evaluation of the merits of using one
or more treatment options for a given disease or condition of interest. Ideally,
clinical trials should be performed in a way that isolates the effect of treatment on
the study outcome and provides results that are free from study bias. A common
approach by which to achieve this aim is through randomization, whereby patients
are assigned to a treatment group by random selection. When performed
appropriately using a sufficiently large sample size of patients, random treatment
allocation ensures that many of the potential forms of bias are balanced out evenly
between treated and untreated groups. For example, unknown factors that lead to
favoring one treatment over the other for selected patients at baseline can be
prevented through a randomized study design [1]. However, it is not always
possible or necessary to have a randomized approach since the objective of the
trial may not be to evaluate the treatment effect against a control. In such
situations we undertake uncontrolled trials.

Uncontrolled clinical trials are a subset of a class of studies referred to as
nonrandomized trials, since a comparison group is not utilized. Hence, uncontrolled
trials attempt to evaluate the effect of a treatment in a group of patients who are
all offered the same investigational treatment.

Rationale for performing an uncontrolled trial

Whether a control group is needed in a clinical trial ultimately depends on the
goals of the investigator. There are two settings where uncontrolled trials can be
particularly advantageous. These are when the goal of the study is to: 

• determine the pharmacokinetic properties of a novel drug (eg, through 
a Phase I or Phase II clinical trial) 

• generate new hypotheses for further research (eg, through a case study 
or case series study) 

Phase I trials

In the early stages of clinical research, a control group might not be desirable 
since the pharmacokinetic and safety profiles of a novel drug have not been
established. After gathering sufficient data from initial preclinical studies through
in vitro studies or through animal models, an investigator might wish to proceed
to the first stage (or ‘phase’) of clinical investigations. This is known as a Phase I
clinical trial. 
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The primary aims of a Phase I trial might be to: 

• determine how well the investigational drug can be tolerated in humans 
• find the maximum-tolerated dose in humans

Secondary aims might be to:

• study the drug’s clinical pharmacology on human patient volunteers who
were typically nonresponsive to conventional therapy

• study the drug’s toxicity on human volunteers

Example

An example of a Phase I trial is illustrated by Bomgaars et al., who conducted 
a study to determine the maximum-tolerated dose, dose-limiting toxicities, 
and pharmacokinetics of intrathecal liposomal cytarabine in children with
advanced meningeal malignancies [2]. The investigators enrolled 18 patients, 
who were given cytarabine either through an indwelling cerebral ventricular
access device or via lumbar puncture. The initial dose was 25 mg, but this was
subsequently escalated to 35 mg, and then to 50 mg. 

The authors found that headache due to arachnoiditis was dose limiting in two 
of eight patients on the 50 mg dose, despite concomitant treatment with
dexamethasone. They also found that eight of the 14 patients assessable for
response demonstrated evidence of benefit (manifest as no further disease
progress or disease remission). Based on these results, the authors suggested that
the maximum-tolerated and recommended optimal dose of liposomal cytarabine
was 35 mg, if given together with dexamethasone twice daily.

Phase II trials

The primary aims of a Phase II clinical trial are:

• initial assessment of a drug’s therapeutic effects 
• initial assessment of a drug’s consequent adverse effects 

Phase II trials are usually performed across multiple study centers, and might even
include a control group and, possibly, randomization. If treated patients show an
adequate response to treatment, the drug will be further evaluated in a large-scale
Phase III (randomized) clinical trial.
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Example

Smit et al. performed an uncontrolled Phase II study of bexarotene, a novel
synthetic retinoid for the treatment of psoriasis [3]. Fifty patients with moderate
to severe plaque-type psoriasis were treated with bexarotene at sequential
increasing doses (0.5–3.0 mg/kg/day) administered for 12–24 weeks. Overall
response rates (≥50% improvement from baseline) were noted for: psoriasis area
and severity index (in 22% of patients); plaque elevation (52% of patients); and
physician’s global assessment of disease (36% of patients). 

In addition, the authors found no serious adverse events related to the bexarotene
therapy; mild adverse events included hypertriglyceridemia and decreased
thyroxine levels. Based on these results, the authors suggested that bexarotene
was safe and warranted further investigation through Phase III clinical trials.

Advantages of uncontrolled trials

Uncontrolled trials are often conducted to provide justification for the potential
health risks and economic costs associated with undertaking a large-scale
randomized clinical trial. The absence of a control group is both a strength and
weakness of uncontrolled trials; though less informative than controlled trials,
uncontrolled trials are faster, more convenient, and less expensive to perform.
Moreover, in the absence of complete information about the pharmacokinetics
and safety profile of an untested drug, uncontrolled trials limit the number of
subjects exposed to a potentially harmful new treatment. 

Uncontrolled trials can be used to generate hypotheses to be answered in future
large-scale controlled trials. They can involve as few as one patient, in which case
the trial is referred to as a case study. An example of a case study is shown by Farid
and Bulto, who studied the effect of buspirone on obsessional compulsive disorder
in a man who failed all existing therapy, including psychosurgery [4]. The authors
presented his positive response to the recommended dose of buspirone and its
effect on the severity of his obsessive compulsive symptoms. 

When a case study is conducted over a series of patients, it is usually published as
a case series study. Soderstrom et al. performed such a study to evaluate the effect
of olanzapine (5–20 mg/day) on six extremely aggressive teenage boys with
neuropsychiatric disorders [5]. All but one of the subjects responded within 
1 week of therapy. The subjects described a markedly increased sense of wellbeing
during the olanzapine treatment. The authors concluded that the therapeutic
benefit observed in four of the boys outweighed the relatively mild side-effects of
weight gain and sedation. 

❘❙❚■ Chapter 2 | Uncontrolled Trials
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Another advantage of uncontrolled trials is that, in certain situations, uncontrolled
trials might be the only study design allowable given a set of ethical considerations.
For example, it is unlikely that patients who experienced a cardiac arrest would be
randomized to resuscitation versus no intervention to evaluate the efficacy of
resuscitation, since untreated patients would certainly die. Similarly, if the new
treatment involved a surgical procedure involving general anesthetic it might be
unethical to perform a ‘sham’ operation given the risk of the anesthesia.

Limitations of uncontrolled trials

A major limitation of uncontrolled trials is the absence of a randomly selected
comparison group, making these trials unsuitable for fully evaluating the efficacy
of a new drug. For instance, uncontrolled trials would be inappropriate for
evaluating whether a particular cholesterol-lowering drug reduces the risk of
coronary events since it would require studying a comparable untreated group 
(eg, a placebo control group). The use of a control group would ensure that the
lowering of cholesterol is attributable to the drug itself and not to some other
cause, such as changes in diet and exercise patterns.

Investigator bias

Another limitation is that, compared with controlled trials, the results of
uncontrolled trials are more likely to lead to enthusiastic results in favor of the
treatment. This specific form of study bias is known as investigator bias [6]. 
For example, suppose that an investigator wishes to conduct a new clinical trial in
search of a promising new therapy. However, desire for the drug’s success drives
the investigator to unconsciously recruit a healthy group of individuals into the
study. These individuals are likely to do well simply from being in the trial itself
(ie, through a placebo effect), biasing the results in favor of therapy. Had the
investigator chosen to include a control group in the study, it is likely that the
results of the study would not have shown an advantage

In general, uncontrolled trials are more likely to lead to positive results compared
to trials using appropriately selected controls [6]. For instance, case series and
observational studies have found corticosteroids to be beneficial in patients with
head trauma. However, a randomized clinical trial was terminated early because
patients randomized to corticosteroids experienced a significantly greater risk of
death compared to patients in the placebo group [7]. Thus, it is possible that over-
interpretation of the results of uncontrolled trials prior to the publication of the
randomized clinical trial led to numerous excess deaths resulting from inappropriate
steroid prescription [8]. This example illustrates that over-interpreting the results
of uncontrolled trials can have significant adverse public health consequences. 

Clinical Trials: A Practical Guide  ■❚❙❘
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Historical controls

Researchers sometimes use results from case series to create historical controls,
where the results from more recent case series are compared against those 
of previous reports. For example, Torres et al. assessed the efficacy of
immunosuppressive treatment in patients with kidney disease (idiopathic
membranous nephropathy) [9]. The authors observed that patients diagnosed
before changes in treatment policy eventually progressed to end-stage renal failure,
whereas those who were diagnosed after these changes had a better outcome. 
The authors hypothesized that this policy change resulted from the publication 
of a small trial that reported some efficacy of immunosuppression [10]. 

However, the use of historical controls is limited. In this case, it remains uncertain 
as to whether the effect of treatment policy on end-stage renal failure was
attributable entirely to the policy change alone. For example, the observed
difference in outcome could have been a result of differences in diagnostic criteria
between treated and historical controls and changes in patient profiles, rather
than due to the changes in treatment policy. Such problems related to using
historical controls have been well-described in epidemiology, particularly with
respect to changes in disease coding or definitions over time [11]. 

Conclusion

Uncontrolled clinical trials have a specific role in clinical research, such as in the
pharmacological evaluation of novel therapies and providing justification for
performing a large-scale clinical trial. In particular, uncontrolled studies might be
preferred over controlled trials in certain situations where a controlled trial is
neither logistically feasible nor ethically justifiable (see Table 1). However, care
should be taken when interpreting the results of uncontrolled trials – the absence
of both a control group and a randomization process can artificially enhance the
validity of these clinical studies.

Table 1. Advantages and limitations of uncontrolled trials.

Advantages Limitations

Used to generate hypotheses and can provide Susceptible to investigator bias because there 
justification for a large-scale clinical trial is no randomly selected group for comparison

Can assess pharmacokinetic properties of a novel drug Susceptible to over-interpretation

Might be the only study design available due to ethical Much less informative than any other studies that
considerations, such as a surgical procedure have a concurrent nonrandomized control group
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Protocol Development

Umair Mallick, Radivoj Arezina, Craig Ritchie,

and Duolao Wang

Once a clinical question has been postulated, the first step in
the conception of a clinical trial to answer that question is to
develop a trial protocol. A well-designed protocol reflects the
scientific and methodologic integrity of a trial. Protocol development
has evolved in a complex way over the last 20 years to reflect
the care and attention given to undertaking clinical experiments
with human volunteers, reflecting the high standards of safety
and ethics involved as well as the complex statistical issues.
In this chapter, we describe in some detail the various aspects
covered in a trial protocol. This section is particularly relevant
to those involved in setting up, evaluating, or coordinating a trial,
or those wanting an insight into the design of a trial protocol.

■■❚❙❘ Chapter 3
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Introduction

The trial protocol is a formal document that specifies how a clinical trial is to be
conducted (Table 1). It describes the objective(s), design, methodology, statistical
considerations, and administrative structure of the trial [1]. We can also regard the
protocol as a scientific, administrative, and organizational project guideline that
may be the basis of a contractual relationship between an investigator and a trial
sponsor [1]. Well-designed protocols are important for conducting clinical trials
safely and in a cost-effective manner. Different trial protocols will retain very
similar key components. However, adaptations may be necessary for each trial’s
particular circumstances.

In scientific research, the first step is to set up a hypothesis, and then to construct
an appropriate study design to test that hypothesis. In clinical trials, the hypothesis
is usually related to one form of therapeutic intervention that is expected to be
superior or equal to another in terms of specific outcomes. 

Once this hypothesis is developed, the study’s aims, design, methodology, statistical
methods, and analyses should be formulated. The protocol should clearly address
issues related to the study’s conduct, set up, organization, monitoring,
administrative responsibilities, publication policy, and timelines, in appropriate
sections. Trial guidelines and regulatory requirements, such as the International
Conference on Harmonisation guidelines for Good Clinical Practice (ICH–GCP)
[1], the Declaration of Helsinki [2], the EU Clinical Trials Directive (EUCTD) [3],
and the US Food and Drug Administration (FDA) Regulations Relating to Good
Clinical Practice and Clinical Trials [4], should be followed as appropriate. 

Protocol writing in a clinical trial

Protocol writing is a joint effort that typically involves a lead investigator (who is
an expert clinician and researcher), along with his/her co-investigators, a clinical
scientist(s), and an expert medical statistician who is familiar (ideally) with the
subject matter. A group of experienced and renowned experts is chosen to peer
review the document; their consultations and opinions are sought as appropriate. 

Most common problems in protocol writing – such as incompleteness, ambiguity,
and inconsistency – reflect an inefficient writing process [5]. Studies have shown
that protocol development is a collaborative scientific writing process, the aim of
which is to achieve consensus within a group of interdisciplinary clinical trial
experts [6,7]. Important characteristics of a good quality protocol are summarized
in Table 2.
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Regular review by the peers and trial organizers is essential during the protocol
development process. All materials and documentation should be kept, including
protocol versions, meeting minutes, and correspondence discussing protocol-
related issues. The final, comprehensive document should elicit a systematic
approach to the development of a clinical trial, which is acceptable on scientific,
organizational, and ethical grounds. 

Implications of guidelines in the development of trial protocol

ICH–GCP [1] has set standards for clinical trials that fall under the UK Medicines
for Human Use (Clinical Trials) Regulations 2004 (SI2004/1031) [8], EUCTD [3],
and FDA Regulations Relating to Good Clinical Practice and Clinical Trials [4].
Most clinical trials (excepting nonintervention trials) involving a medicinal
product(s) in human subjects are encompassed by the EUCTD and FDA
regulations, and the protocol should therefore meet the standards required by
ICH–GCP. Once the protocol is completed according to the given standards, it is
reviewed by the local research ethics committee or institutional review board.
Other key agencies – such as the Medicines and Healthcare Products Regulatory
Agency (MHRA) in the UK or the FDA in the US – may also be asked to
comment on a trial design.

Table 1. Questions addressed by a protocol. 

• What is the clinical question being asked by the trial?

• How should it be answered, in compliance with the standard ethical and regulatory requirements?

• What analyses should be performed in order to produce meaningful results?

• How will the results be presented?

• Clear, comprehensive, easy to navigate, and unambiguous

• Designed in accordance with the current principles of Good Clinical Practice and other regulatory requirements

• Gives a sound scientific background of the trial 

• Clearly identifies the benefits and risks of being recruited into the trial

• Plainly describes trial methodology and practicalities

• Ensures that the rights, safety, and well-being of trial participants are not unduly compromised

• Gives enough relevant information to make the trial and its results reproducible

• Indicates all features that assure the quality of every aspect of the trial

Table 2. Qualities of a good protocol. 
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Key components of a trial protocol

The trial protocol is a comprehensive document and the core structure of the
protocol should be adapted according to the type of trial. ICH–GCP can
be used as a reference document when developing a protocol for pharmaceutical
clinical trials (Phase I to Phase IV) involving a pharmaceutical substance (the
investigational medicinal product [IMP]) [1]. Most institutions and pharmaceutical
companies use a standard set of rules to define the main protocol outline,
structure, format, and naming/numbering methods for their trials. In this section,
we briefly describe the main components of a typical protocol. 

Protocol information page

The front page gives the: 

• trial title
• trial identification number
• protocol version number 
• date prepared 

The descriptive title of the protocol should be kept as short as possible, but at 
the same time it should reflect the design, type of population, and aim of the 
trial. ICH–GCP suggests that the title of a pharmaceutical trial should additionally
include the medicinal product(s), the nature of the treatment (eg, treatment,
prophylaxis, diagnosis, radiosensitizer), any comparator(s) and/or placebo(s),
indication, and setting (outpatient or inpatient) [1]. The key investigational site,
investigator, and sponsor should also be detailed on the title page.

Table of contents

A table of contents is a useful tool that allows easy navigation through the
protocol. The table of contents may vary according to the design of the clinical
trial. Table 3 gives an example table of contents for a typical protocol.

Definition of abbreviations

All abbreviations used in the protocol should be defined in a separate section.
These should be accepted international medical or scientific abbreviations.

❘❙❚■ Chapter 3 | Protocol Development
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Table 3. Illustration of a table of contents in a protocol.

Component Details

Protocol information page Study title, trial ID number, version, list of appendices, definition of abbreviations
and terms

Study summary or synopsis A summary of one or two pages in a table format 

Trial flow chart Describing flow of the trial 

Introduction Trial background and rationale

Study objectives Primary and secondary objectives

Investigational plan Overall study design and plan

Trial design, study population (inclusion criteria, exclusion criteria), randomization,
blinding, premature discontinuation criteria, record of study participants, study
medication (description and labeling, storage, administration, dosing strategies,
accountability, over-dosage, occupational safety)

Study conduct

Study schedule, study flow chart, written informed consent, participant numbering,
screening entry, treatment phase (visit numbers), early withdrawal, concomitant
medication, blood and urine sampling, processing of samples

Safety and efficacy evaluations

Safety assessments, efficacy evaluations, unscheduled visits

Recording safety information

Adverse events (glossary, adverse drug reactions, serious adverse events, 
reporting of overdose, pregnancy, breaking of study blinding by the investigator) 

Participant completion and discontinuation

Premature withdrawal of participants from the study, procedure for 
handling withdrawals

Statistical issues Primary and secondary endpoints, sample size calculations, intention-to-treat
population, per-protocol population, efficacy population, safety population, 
handling of dropouts and missing data, efficacy analyses (primary, secondary,
tertiary), safety analysis, pharmacokinetic and pharmacodynamic analysis, 
adjusted analysis, subgroup analysis, statistical methods for various analyses

Ethics Participant information sheet and informed consent, ethics approvals

Regulatory requirements, Regulatory requirements, protocol amendments, curriculum vitae, investigators,
administrative issues, administrative structures, investigator’s statement, trial monitoring (safety
and monitoring monitoring, quality control, auditing and inspecting), case report form, archiving 

of records, final reports, study documentation and publication of study results,
financial agreement, termination of the study, study discontinuation by the 
sponsor and by the clinical investigator, insurance policy

References Listing of references to justify the study rationale

List of appendices Informed consent form, Declaration of Helsinki, notable values for laboratories
and/or vital signs, investigator’s statement, etc.
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Trial summary or synopsis

A synopsis should provide the key aspects of the protocol in no more than two
pages, and can be prepared in a table format. The main components of the
protocol summary include: 

• full title
• principal investigator
• planned study dates
• objectives
• study design
• study population
• treatments 
• procedures 
• sample size
• outcome measures 
• statistical methods 

Flow chart

A flow chart is a schematic diagram that summarizes trial design, procedures, 
and stages. It emphasizes the timing of enrolment procedures, study visits, study
interventions, and follow-up assessments.

Background and rationale of the trial

The background section is built on experience gained from previous research. 
It describes the test treatment, including an outline of what is known about the
effects of the treatment from previous research, and gives a rationale for the
current research study. The main aim of the study background is to give the reader
the knowledge they require to understand the questions or hypothesis of the study.

A systematic review of the study topic should be performed beforehand. This is an
effective way to summarize the relevant available data. The basic structure of the
background section should include (in this order):

1. known research on the topic
2. what is unknown about the topic
3. the study question or hypothesis

In clinical trials that involve an IMP, various aspects of the treatment and the
disease should be elaborated on. These include existing epidemiological data
regarding the disease (along with references to the literature), possible existing
caveats in available therapies, and potential benefits that can be achieved through
this trial. 
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ICH–GCP specifically requires information referring to pharmacological and
clinical data regarding the IMP, in particular from nonclinical studies and other
clinical trials, to justify use of the IMP in a trial [1]. In such trials, a description
and justification of route, dosage, dosage regimen, and treatment period is a vital
part of the protocol. Please refer to the later section on trial documentation 
(p. 34) for further details.

Study objectives 

Research objectives describe the information the investigator aims to obtain from
the study. Each specific aim should be a precisely worded definition of a stated
question or hypothesis to be tested. The protocol must distinguish between
prospective (a priori) research hypotheses and ones that have been based on
knowledge of the data (retrospective). 

• When the effect of an intervention is investigated in a specific group 
of patients, the aim of the study should be stated as a question – 
eg, “What is the effect of aspirin on mortality in patients with 
myocardial infarction?” 

• When the study is investigating the believed effect of an intervention 
in a specific group of patients, the aim of the study should be stated 
as a hypothesis – eg, “Aspirin is associated with a reduction of mortality 
in patients with myocardial infarction.” 

Each trial must have a primary question (primary hypothesis) as well as secondary
questions (secondary hypotheses) if needed. 

Investigational plan for the trial, study conduct, and safety issues

This section is one of the most important components of the trial protocol.
Various subsections should give detailed descriptions of the trial, design, study
population (eligibility criteria), issues related to practical aspects of an
intervention, and drug safety issues in the clinical trial (Table 4). 

Table 4. Information that should be given in trials using an intervention related to a drug treatment.

• Type of drug • Dosage regimen • Randomization

• Blinding methods • Drug initiation and duration • Drug supply

• Labeling and packaging • Storage of trial drugs • Drug accountability

• Treatment safety • Occupational safety • Over-dosage

• Concomitant medications • Discontinuation criteria • Return instructions
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In double-blind studies, procedures on how to unblind must be stated. A separate
section with adverse event-related identification, reporting, and management is
mandatory in drug trials.

Practicalities of the trial in terms of assessments and periods (screening entry,
treatment phase, patient visit numbers), blood and urine sampling, or other
investigations, measurements, or assessments are most appropriately given in a
table format. In addition to study efficacy and safety variables, data quality-related
issues should also be given in this section. Participant completion and
discontinuation information, such as premature withdrawal of a participant 
from the trial, along with appropriate procedures for handling withdrawals, 
also constitute an important part. ICH-GCP requires that stopping rules 
or discontinuation criteria, accountability procedures, randomization codes
maintenance, and breakage criteria, along with other details, should be
specifically mentioned in this section of the protocol.

Trial design

The choice of trial design (eg, parallel-group trial, cross-over trial, factorial trial,
cluster randomized trial) largely depends upon the research question that is being
asked. The design specification should be able to reflect the: 

• type of treatment and number of treatments
• method of randomization
• type of blinding
• type of study question
• study medication

For example, in randomized clinical trials, while describing the study design, the
type of treatment (active or placebo) received by population groups should be
described, as well as the type of blinding (unblinded, single blinded, double
blinded). A statement relating to superiority, inferiority, and noninferiority
between the treatment groups should be given.

Eligibility criteria

In a clinical trial, the eligibility criteria aim to define the study population. 
The study population is a subset of the population with the medical condition in
which the intervention is to be tested. Eligibility criteria are related to patients’
safety and the anticipated intervention effect. The eligibility criteria will have 
a significant impact on the generalizability of the study results, as well as on
recruitment rates of the study; using eligibility criteria that are too restrictive can
lead to difficulty in recruiting sufficient patients. 
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Eligibility criteria are categorized into two groups: inclusion criteria and exclusion
criteria. Appropriate justifications should be given for the use of certain inclusion and
exclusion criteria. Any contraindications to continuing in the study should be stated,
together with criteria and procedures for participant withdrawal from the study. 

Randomization

Randomization is a process that allocates participants to the intervention or
control group by chance. The trial protocol should include the randomization
procedures, including important issues that must be considered in the randomization
process. These include the allocation ratio, types of randomization, and mechanisms
of randomization.

Enrolment process

A section on the enrolment process should explain how the patients will be
identified, screened, and consented into the trial. It must be emphasized that
consent procedures will be followed and written consent forms signed before
patients are enrolled into the trial. Screening procedures must be specified,
including investigations performed in the individual patient in order to determine
whether they meet the eligibility criteria.

Procedures, treatments, and follow-up

The type and duration of treatment or follow-up should be specified, along with
dose regimens, etc., and an indication of who will perform the work, specifying
requirements that must be met in order to be an investigator in the trial. Details
of any tests (eg, blood or urine samples) or procedures to be performed, together
with their timing, must be given. Criteria for modification of the treatment
schedule should also be described. Length of follow-up of the study and timing 
of follow-up visits should be included. 

Outcome measures or endpoints

An outcome measure or endpoint is a direct or indirect measurement of a clinical
effect in a clinical trial, required to be able to make an effective claim regarding
the intervention under investigation. The goal of a clinical trial is to assess the
effect of treatment on these outcome measures with as few biases as possible. 
A primary endpoint is used to address the primary objective of a study, whereas 
a secondary endpoint is related to the secondary objective. A clear definition of
each outcome measure must be stated (eg, death or cardiovascular death in 
a cardiovascular drug trial).

Sample size

A clinical trial should have enough statistical power to detect clinically important
differences between the treatment groups. Thus, estimation of the sample size
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with provision of the expected treatment effect, level of significance, and power are
absolutely critical to the success of the trial. The sample size is usually estimated
to test the primary hypothesis of no difference between the therapies to be tested. 

Statistical issues

In this section, the statistical analysis plan is described; this is based on the study
design, objectives, and outcomes (primary and secondary). The type of statistical
analyses and their justification for use should be given, as appropriate – eg, the
type of analysis (such as intention-to-treat or per-protocol analysis) should be
stated. The selection of the statistical methods will depend on the type of outcome
measure variables and the study design. 

The protocol should specify how to deal with dropouts and missing data. If an
adjusted analysis is planned, the protocol should specify the covariates to be
included in the adjusted analysis. Similarly, subgroup analyses should be defined
a priori on the basis of known biological mechanisms or in response to the findings
of previous studies. 

Ethics

Ethical considerations should be taken into account from the beginning of the
protocol design, addressing issues related to participants’ rights, confidentiality,
and safety, as well as treatment efficacy issues for trials that evaluate the therapeutic
effects of an IMP. 

The main objective of this section is to establish that the study design conforms
with ICH–GCP [1], the Declaration of Helsinki [2], and local ethical and legal
requirements. All research involving human participants must receive favorable
approval from the local research ethics committee or institutional review board
before its start. Before patients can be included in the study, they must read a
patient information letter and sign a written informed consent form. 

Regulatory requirements and administrative considerations

The development and sale of drugs and devices for human use is supervised by
government-appointed regulatory authorities, such as the MHRA in the UK and
the FDA in the US. These authorities ensure that the products or devices are safe
and effective, and that all aspects of development, manufacturing, and clinical
investigation conform to agreed quality standards. The application to government
authorities for regulatory issues of the trial must be stated in the protocol.
Furthermore, protocol amendments from previous versions and details of the 
trial documentation, investigators, administrative structures, the investigator’s
statement, financial agreement, and issues related to trial discontinuation by the
sponsor and by the clinical investigator should all be given. 
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Trial monitoring

Trial monitoring describes a systematic and independent examination of trial-
related activities, documents, and safety data to ensure that the trial is conducted
in accordance with the protocol and standard operating procedures, and
regulatory requirements [1]. If applicable, the monitoring plan for the trial should
be given in detail. In clinical trials, data monitoring is performed for clinical safety
issues as well as for source data verification in order to comply with ICH–GCP;
the former is usually undertaken by the data and safety monitoring board. 
A protocol must state the procedures for completing the case record form (CRF)
and source data verification, auditing and inspection, and record keeping and
archiving of data collected and any relevant study material. Hoax patient
recruitment is one of many reasons for trial monitoring.

Publication policy

The publication policy should state the need for clinical investigators to retain the
right to present and publish the results of their study. An indication of the type of
journal that will be targeted for publication of the main study manuscript should
be specified at the start of a study. Issues related to data confidentiality, copyright,
and authorship should be briefly incorporated in the trial protocol.

Study timetable

A study timetable is given at the end of the protocol document. This should
include a summary of the steps and timing from study start-up to production of
the final clinical report. This section may vary according to the type of clinical
trial. In general, the timetable includes timelines for: 

• completion of protocol 
• completion of CRF and other study documentation
• submission for ethical approval (central or local ethical)
• database development and trial registration
• center selection
• initial study negotiations (feasibility, budget, etc.)
• investigator meetings
• site initiation meetings
• enrolment period (screening and treatment)
• site monitoring visits
• completion of follow-up
• interim and final data analyses
• final report preparation
• submission of the study manuscript to a journal 
• presentation of study results at scientific meetings 
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References 

References should be used where required. The design of a study protocol
requires an evidence-based approach. This should justify the study rationale and
background, and will also be relevant for preclinical and clinical information given
in the ‘investigators’ brochure’. A reference list must be included at the end of the
protocol, before any appendices, relating to rationale and statistical methods. 

Case record form and trial documentation 

The CRF is a printed or electronic document designed to capture a required record
of data and other information for each patient during a clinical trial, as defined by
the clinical protocol. In a protocol, the type of CRF (paper or electronic) and the
method for transmitting data from the CRF to the coordination center (eg, mail,
fax, electronic) for data management and analyses should be specified.

The investigators’ brochure is a compilation of clinical and nonclinical data on the
IMP(s) relevant to the study of the product in human participants. This document
can be an integrated part of the protocol or prepared as a separate document to
provide researchers with information to help them understand the rationale and
comply with the protocol. Its main aim is to support clinical management of the
participants in a clinical trial.

If any protocol amendments exist, these should be integrated into the protocol 
or provided in separate appendices. Any other appendices (eg, flow charts,
assessments, measurements) should accompany the protocol as appropriate.
Documents such as the participant information sheet, consent form, and
information letter to participants’ physicians are normally provided to the study
investigators separately from the protocol.

Trial committees 

The study organization will depend on the complexity and size of the trial. The
following committees are usually set up for most Phase III trials and described in
the protocol if relevant.
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Executive committee

The executive committee is responsible and accountable for [9]: 

• proper design and conduct of a trial
• ethical and professional standards of a trial
• ensuring that the results of clinical trials and scientific endeavors 

are arrived at in the most economical manner possible
• considering and implementing any recommendations from 

the data and safety monitoring board (see below) 

Steering committee 

The steering committee is responsible for [9]: 

• guiding the overall conduct of the trial
• ensuring that the trial protocol meets the highest scientific standards
• protecting the rights and well-being of trial participants 

In some trials, only a steering committee is set up, taking the responsibilities of
both the executive committee and the steering committee. 

Data and safety monitoring board or committee 

The independent data and safety monitoring board will regularly review interim
data from the trial and can recommend that the trial stop early for one of the
following reasons [10]: 

• The trial shows a large number of serious adverse events in one 
of the treatment groups.

• The trial shows a greater than expected benefit early into the trial.
• It becomes clear that a statistically significant difference by the end 

of the trial is improbable (futility rule).
• Logistical or data-quality problems are so severe that correction 

is not feasible.

Clinical event review committee 

The independent clinical event review committee, or endpoint committee, reviews
major clinical events (usually primary endpoints) that occur during the trial, 
and adjudicates or codes them into categories for later analyses. 
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Conclusion

Writing a protocol for a clinical trial is a complex, intellectual, and creative task,
which is fulfilled by a team of researchers and experts in various areas of research
including scientific, medical, statistical, ethical, regulatory, and administrative fields.
The protocol is a document that carefully synchronizes knowledge in these areas
in accordance with the scientific core of a clinical trial and various quality and
regulatory recommendations.

In recent years, the development of guidelines has tremendously helped to develop
standards for protocol writing in clinical research. This, in turn, has improved the
methodology, conduct, and quality of clinical trials, with an ever-increasing ethical
emphasis for all participants in the trial. Lastly, such protocols have become
publications in their own right, allowing for peer review and feedback on trial
assumptions at an early stage in the conduct of a trial.
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Endpoints

Ameet Bakhai, Amit Chhabra, and Duolao Wang

“The greatest challenge to any thinker is stating the problem in a
way that will allow a solution,” said Bertrand Russell (1872–1970).
This maxim holds as strongly for clinical trials as for any quest
in life. While the first clinical trials asked questions about events
such as the rate of death or recurrence of infection, researchers
are now interested in more sophisticated clinical trial endpoints
for measuring combined outcomes (eg, avoiding death or
hospitalization, or disease-specific outcomes such as asthma
exacerbations or heart attacks). Researchers are also
becoming more interested in economic outcomes for evaluating
whether clinically effective treatments are also cost-effective.
Surrogate endpoints are also used in trials that are related to
disease-specific outcomes; eg, cholesterol level is a surrogate
endpoint related to the risk of heart attacks. In this chapter, 
we discuss the types of endpoints that can be used in 
clinical trials.

■■❚❙❘ Chapter 4
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What is a clinical trial endpoint?

A clinical trial endpoint is defined as a measure that allows us to decide whether
the null hypothesis of a clinical trial should be accepted or rejected. In a clinical
trial, the null hypothesis states that there is no statistically significant difference
between two treatments or strategies being compared with respect to the endpoint
measure chosen. An endpoint can be composed of a single outcome measure –
such as death due to the disease – or a combination of outcome measures, such as
death or hospitalization due to the disease.

Clinical trial endpoints can be classified as primary or secondary endpoints.
Primary endpoints measure outcomes that will answer the primary (or most
important) question being asked by a trial, such as whether a new treatment is
better at preventing disease-related death than the standard therapy. In this case,
the primary endpoint would be based on the occurrence of disease-related deaths
during the duration of the trial. The size of a trial is determined by the power
needed to detect a difference in this primary endpoint. 

Secondary endpoints ask other relevant questions about the same study; for
example, whether there is also a reduction in disease measures other than death,
or whether the new treatment reduces the overall cost of treating patients.
Occasionally, secondary endpoints are as important as the primary endpoint, 
in which case they are considered to be co-primary endpoints. When secondary
endpoints are also important then the trial must be sufficiently powered to 
detect a difference in both endpoints, and expert statistical and design advice
might be needed.

What are the main types of endpoints?

An endpoint may be based on [1]:

• a binary clinical outcome indicating whether an event – 
such as death from any cause – has occurred

• death from a disease-specific cause (eg, a fatal stroke for a trial 
comparing blood pressure treatments)

• the occurrence of disease signs or symptoms
• the relief of symptoms
• quality of life while disease is active
• the use of healthcare resources (eg, the number of hospital admissions)
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Ideally, a trial should have a single endpoint based on just one outcome measure.
However, as the art of trial design has evolved, most large trials have a primary
(composite) endpoint consisting of multiple outcome measures.

An endpoint can also be the time taken for an event to occur. For such an endpoint,
the events of interest for which a time is to be recorded – such as stroke or heart
attack – must be predefined. Trial endpoints can also be a quantitative measurement
of a biochemical or socioeconomic parameter such as cholesterol level or quality-
of-life score. Therefore, there are a number of different outcomes – which can be
evaluated both individually and in combination – on which the primary endpoint
of a trial can be based.

How are clinical endpoints chosen?

When choosing endpoints for a clinical trial, it is important to ensure that they:

• are clinically meaningful and related to the disease process
• answer the main question of the trial
• are practical so that they can be assessed in all subjects in the same way
• occur frequently enough for the study to have adequate statistical power 

If the endpoint to be measured consists of more than one outcome, then these
outcomes should be easily differentiable from each other so that the events may 
be quantified independently. For example, in a cancer treatment trial, good outcomes
to choose would be the primary tumor size and the number of new tumor metastases. 

Why is death or time to death not always the best endpoint

to measure?

Although death is the ultimate clinical endpoint and probably the best yardstick 
to judge treatments by, it may not be the best endpoint to measure in all studies 
for the following reasons:

• Death may be a rare event within the timeframe of the trial.
• Following all patients until a significant difference is seen in the 

number of deaths or the time to death may take many years of 
follow-up, so substantial resources may be required.

• Death may result from causes other than the disease being treated 
(eg, deaths due to car accidents, assuming that the disease process 
does not impair driving ability).
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One rare example where all patients died in the timeframe of the study and,
therefore, where time to death was the primary outcome measured, was a study 
in Zambia where patients with HIV were given fluconazole for proven
cryptococcal meningitis [2]. In this case it was feasible to follow all patients to
death because the disease is rapidly fatal, even with treatment. Therefore, the
endpoint of this trial was the mean time to death for each treatment group, and
the results showed that patients given fluconazole lived an average of 9 days
longer than those who were not.

Composite endpoints

While some guidelines – such as the guidance on trial design in the International
Conference on Harmonisation guidelines for Good Clinical Practice – prefer 
a primary endpoint based on a single outcome that will be defined before the
study begins, many studies include multiple outcomes as part of a composite
endpoint. Exploratory clinical investigations or early-phase studies are more likely
to have multiple outcomes, with some of these being developed during the study.
An example of a clinical trial with a composite endpoint of multiple outcomes 
is the CURE (Clopidogrel in Unstable Angina to Prevent Recurrent Events)
study [3]. This study looked at the effects of clopidogrel in patients with acute
coronary syndromes without ST-segment elevation. In this trial, the primary
endpoint was a composite of the following clinical outcomes: 

• death from cardiovascular causes
• stroke 
• nonfatal myocardial infarction (heart attacks)

The second primary endpoint was the composite of the outcomes forming
the first primary endpoint plus refractory ischemia (angina unresponsive to
medical therapies).

When multiple outcomes can be experienced by any of the patients it is often best
to present both the total number of outcomes per patient and hierarchical counts
of outcomes. In the latter, only one outcome can be counted for each patient, and
it is usually the most serious outcome that is recorded. The rules for the hierarchy
of outcomes are usually established in advance of the trial, with a fatal outcome
taking precedence over a nonfatal one.

Another way of combining outcomes would be to compare the number of
recurrences of identical outcomes, such as the number of seizures experienced by
patients with epilepsy during a follow-up period.
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Advantages of using composite endpoints

There are two main advantages of using a composite endpoint. An endpoint with
multiple outcomes means that more outcome events will be observed in total.
Since the number of patients needed in the trial decreases as the number of events
occurring in the control group increases, a composite endpoint allows us to
evaluate a new treatment by using a smaller number of patients in the trial. 
For example, if the expected 1-year rate of events (death alone) is 1%,  a sample
size of 21,832 subjects will be required to show a 40% reduction in death 
(a type I error rate = 0.05 with 90% power). (For an explanation of how to
determine the sample size for a clinical trial, see Chapter 9.) If, on the other 
hand, we look at the combined outcome of death or heart attack, which may be
expected to occur at an annual rate of 10%, then this study would require a sample
size of 2,028 subjects to capture a 40% reduction. This does, of course, assume
that both the rate of deaths and the rate of heart attacks are expected to be
reduced equally by 40%, which may not always be the case, and so this needs to
be factored into the sample size calculation. 

The other advantage of combining several outcomes is that a more comprehensive
evaluation of a treatment can be given across more than just one category of
outcome. For example, for a study on colon carcinoma, the outcome variables
could be any of the following categories [4]:

• clinical (eg, symptoms of constipation) 
• pathologic (eg, histologic evaluation from colon biopsy) 
• visual (eg, endoscopic evaluation of tumor size) 
• biochemical (eg, laboratory evaluation of tumor markers or signs 

of liver damage due to secondary tumors) 

If the trial is adequately sized, the action of the treatment can then be assessed on
each and every outcome.

Limitations of composite endpoints

In a composite endpoint of multiple outcomes we make the assumption that
avoiding any one outcome has an equal importance as avoiding any other
outcome. However, this is rarely the case. For example, in the case of colon
carcinoma, avoiding constipation might not be as important as shrinking the
tumor mass or delaying death – although, from a patient’s point of view, avoiding
constipation might be critical since constipation might lead to the need for a
surgical solution if not resolved by drugs.

The second assumption made when using composite endpoints is that all
individual outcome measures are related to the disease process and are equally
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meaningful. This is not always the case. Many trials, for example, consider
rehospitalization or escalation of treatment usage to be outcome measures.
However, it is possible for such outcomes to occur for reasons that are somewhat
independent of the disease process itself, such as initial poor compliance with
treatment requiring higher doses of therapy as a corrective measure. The
occurrence of these measures may therefore not correlate strongly with the
disease process, but their absence might be a strong indicator of treatment effect.
This is a fairly complex matter and requires further discussion and debate. 
For now, bodies such as the US Food and Drug Administration (FDA) prefer
clinically meaningful outcomes such as disease-specific death rates.

An additional limitation of composite endpoints is that they can also give
inconsistent results, with certain outcomes improving and others worsening,
making overall interpretation of the study difficult. Whether the outcomes chosen
are clinical, biochemical, pharmacologic, pathologic, physiologic, or other, their
relative importance should be determined prior to data collection, during the
design of the trial.

Surrogate endpoints

As we have discussed, it is not always practical or feasible to base endpoints on
‘true’ clinical outcomes that, like death, might only occur after some time.
Therefore, to be able to assess potential treatment effects, alternative measures
are needed. One solution that has recently been attracting interest is surrogate
endpoints. Temple defines a surrogate endpoint in a clinical trial as a laboratory
measurement or physical sign used as a substitute for a clinically meaningful
endpoint that measures directly how a patient feels, functions, or survives [1].
Changes induced by a therapy on a surrogate endpoint are expected to reflect
changes in a clinically meaningful outcome measure [5].

A potential surrogate endpoint should be chosen based on strong biological
rationale. Commonly used surrogate endpoints include [6]:

• pharmacokinetic measurements, such as concentration–time curves 
for a drug or its active metabolites in the bloodstream

• in vitro measurements, such as the mean concentration of an antibiotic
agent required to inhibit growth of a bacterial culture

• radiological appearance, such as increased shadowing seen on a chest 
X-ray film of a patient with smoking-related lung disease that is related 
to a patient’s breathing capacity
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• a change in the levels of disease markers, such as a change in blood
pressure as a predictor of a future occurrence of a stroke or kidney disease

• the macroscopic appearance of tissues, such as the endoscopic
visualization of an area of erosion in the stomach that is considered 
by gastroenterologists to be the precursor of stomach bleeds

Advantages of surrogate endpoints

Like a composite endpoint, use of a surrogate endpoint can reduce the sample
size needed for a study and thereby the duration and cost of performing a clinical
trial. Surrogate endpoints are particularly useful when conducting Phase II screening
trials to identify whether a new intervention has an effect, since a change is often
seen in a surrogate endpoint long before an adverse event occurs. If there is
sufficient change, it might then be justifiable to proceed to a large definitive trial
with clinically meaningful outcomes.

Limitations of surrogate endpoints

It is important to realize that surrogate endpoints are only useful if they are a good
predictor of a clinical outcome. If this relationship is not clearly defined, surrogate
endpoints can be misleading. One classic example is the following case of three
particular antiarrhythmic treatments.

Example

Three drugs (encainide, flecainide, and moricizine) were found to reduce
arrhythmias and received FDA approval for use in patients with life-threatening
or severely symptomatic arrhythmias. This was based on the assumption that 
if irregularities in heart rhythm were reduced, there should be lower numbers 
of cardiac deaths from disturbances of heart rhythm. More than 200,000 patients
per year took these drugs in the US. However, it was subsequently shown in the
CAST (Cardiac Arrhythmia Suppression Trial) study of 2,309 subjects that rates
of death were higher in patients taking these drugs compared to those on 
placebo [7–9].

Health-economic endpoints

Economic endpoints are becoming increasingly important for new treatments.
The Medical Research Council in the UK believes that clinical trial reports should
always be accompanied by economic evaluations [10]. The growing number of
economic analyses being submitted to medical journals led to the then editor 
of the BMJ announcing a policy that stated that economic results from clinical
trials would now always have to be submitted with their respective clinical results,
or they would not be accepted [10]. Therefore, assessments of health economics
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and technology, which are done to compare the quality of life of patients in
different treatment groups or the costs of care of new treatments (which are
usually more expensive than standard treatments), have become increasingly
relevant in the approval and reimbursement of new therapies.

There are two main measures of health economics: quality-adjusted life-years
(QALYs) gained – a measurement of the duration of an individual’s life, taking
into account the well-being that they experience during that time [11] – and cost.
These measures can also be combined to give a cost-effectiveness ratio, which is
the cost of gaining an extra year of life or a benefit in the quality of life for the
patient. The most robust cost-effectiveness studies are conducted alongside clinical
trials, and these collect resource-use costs for all subjects from each center.

Advantages of health-economic endpoints

While other treatment-specific endpoints such as sight-years gained, symptom-
free time, and cases of disease prevented can also be used [12], they cannot 
easily be compared directly. Since the primary economic question is how to get the
most benefit from health expenditure, a US panel on cost-effectiveness has
recommended using a QALY analysis where possible in order to be able to make
comparisons across diseases [13,14]. By calculating the cost per QALY gained for
different treatments, healthcare providers can compare where best to invest their
limited resources.

One of the interesting differences between clinical trial reports and cost analyses
is that, often, trial reports focus only on the worst or first event that a patient
experiences, while cost analyses aim to calculate the cost of all events experienced
by each patient.

Limitations of health-economic endpoints

Estimating health-economic endpoints alongside clinical trials is a relatively
recent concept and, therefore, is only as good as the experience of the economic
investigators. The data captured for an economic analysis might not even be used
if the treatment is both more expensive and less effective than standard care.
Many assumptions often need to be made in an economic analysis, making the
data less robust. Economic analyses might not be easily transferable across
countries since the cost of care can be very different internationally, and clinical
results are dependent on local practice patterns and the availability of facilities. 

Certain disease states affect the patient only briefly and might not have a long-
term impact if they are not fatal. For example, a collapsed lung might not kill 
a patient, so the negative impact on the patient’s quality of life is only brief and
therefore the cost-effectiveness of treating the condition would be unfavorable.
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However, treatment can be given almost immediately, few physicians would
withhold treatment for this condition, and few patients would wish to remain
untreated. This shows that economic analyses are not necessarily valuable in
isolation. For this reason, other economic endpoints are being reviewed, such as
the amount that patients would be willing to pay to avoid such an event.

Conclusion

As trial designs evolve, endpoints are becoming more complex. There are 
often both primary and secondary endpoints in a trial. Endpoints may consist of
more than one clinical outcome and can also include biochemical outcomes.
Surrogate endpoints are particularly useful for early-stage trials, once it has 
been established that the surrogate marker is strongly related to the clinical
outcome for the disease process. Economic outcomes are becoming more
important and are now more frequently evaluated. Given all these choices, it is
wise to appreciate the strengths and limitations of each type of endpoint at an
early stage of study design. 
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Patient Selection

Belinda Lees, Dorothea Nitsch, Duolao Wang,

and Ameet Bakhai

When designing a clinical trial, the objective is to select a sample
of patients with the disease or condition under investigation.
Consideration should be given to the source of the patients,
the investigators who are going to recruit them, disease status,
and any ethical issues surrounding participation. A set of
carefully defined eligibility criteria is essential. This should
ensure that the study findings have ‘external validity’ or, in
other words, are generalizable for the treatment of future
patients with the same disease or condition. In this chapter,
we discuss some of the important issues to consider when
selecting patients for clinical trials.

■■❚❙❘ Chapter 5
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Introduction

The aim of a clinical trial is to investigate the efficacy of an intervention in patients
with a particular disease or condition. When performing a trial, it is impossible to
enroll every patient with the particular disease or condition – instead, a sample of
patients is selected that represents the population of interest. It is therefore
essential that the selected sample truly reflects the population it represents, and
that the eligibility criteria are not so restrictive that they hamper recruitment or
limit the generalizability of the findings. Essentially, the findings from the trial
should have relevance to patients in future clinical practice, ie, the study should
have external validity or generalizability. In order to ensure generalizability, it is
essential to have an understanding of the disease and its current treatment
options. However, eligibility criteria also serve the function of choosing a sample
who can tolerate being in a trial and those in whom there are less co-morbidities
that might dilute the effect of the intervention. Also, for clinical safety it is
worthwhile selecting a sample who are less likely to have adverse effects (not the
elderly or those on multiple co-therapies).

Example

During the planning of the CHARM (Candesartan in Heart failure – Assessment
of Reduction in Mortality and morbidity) trial, it was already known that
angiotensin-converting enzyme (ACE) inhibitors are beneficial to patients with
severe heart failure. Since the pharmacological targets of candesartan and ACE
inhibitors are related, it seemed unethical to stop ACE inhibitor treatment in
patients already receiving this medication unless they were experiencing negative,
drug-related side-effects. However, at the same time, it seemed valid to include a
group comprising patients with less severe heart failure who were not receiving
ACE inhibitors, since candesartan was expected to have some effects in patients
with preserved heart function. Therefore, the CHARM program consisted of
three trial subpopulations [1] These subpopulations contained patients with:

• severe heart failure on ACE inhibitor therapy (CHARM-Added)
• severe heart failure who had ceased previous ACE inhibitor 

therapy due to side-effects (CHARM-Alternative)
• heart failure despite preserved heart function (CHARM-Preserved)

In this way, any benefit of candesartan could be demonstrated to be broadly
generalizable to patients with heart failure, whilst ensuring that useful
comparison groups for other specific situations were chosen. 
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General considerations 

Source of patients

One of the first considerations when designing a clinical trial is to establish where
the patients will be recruited from. The sample size and the clinical outcomes to
be measured will need to be balanced against practical considerations. For studies
that involve a large number of very detailed observations, it may only be practical
to enroll a small number of patients. 

Phase I and II pharmaceutical studies usually involve small numbers of patients
and are therefore frequently performed in specialist centers (eg, asthma laboratories
in hospitals with dedicated research units). Phase III studies, however, typically
require larger numbers of patients. Enrolment for these studies might be conducted,
for example, through a primary care physician’s surgery, although the extent of
patient evaluation might be restricted as a consequence. 

When researchers select centers to be used to recruit patients, there is often 
a tendency to concentrate on ‘centers of excellence’. This is because the
investigators at these centers are often experienced in clinical trials or experts in
the disease area. It is important to bear in mind, however, that patients at ‘centers
of excellence’ can be highly selected, with different patterns of referral from more
general centers. It is also possible that more difficult or complex cases are handled
more skillfully, and therefore efficacy and safety might be overstated; this is often
seen in surgical studies, where there is usually a learning curve associated with
new surgical techniques. 

Investigators and centers

In order for recruitment to be successful, it is important that patient selection is
performed at centers with enthusiastic investigators who are convinced of the
scientific importance of the trial. Investigators must have an understanding of
what is required for the trial so that they can clearly communicate this information
to potential participants. 

Investigators also need to have access to the facilities and equipment that are
required to perform the trial-related tests and measurements (eg, echocardiography
measurements in a study of heart valves). Patient selection can be compromised 
if investigators are performing competing studies; it will certainly be compromised
if the investigators do not have enough dedicated research staff to screen patients
and perform the trial-related procedures. 
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When estimating the likely number of patients to be selected for a trial at a
particular center, the investigator often relies on guesswork based on the number
of previous patients with the condition. A more useful method is to request that
investigators complete a screening log, prior to the start of the study, of all
patients who present with the condition within a predetermined timeframe, and to
record whether each patient is eligible for the study. 

Recruitment will often not be possible at a single center due to its limited capacity
and resources; there might also be an insufficient number of patients presenting
with the disease, resulting in the center failing to recruit the required numbers
within the allotted timeframe. It is important to recruit patients for a study in as
short a timeframe as possible in order to maintain enthusiasm for the study. 
One way of improving recruitment centers is to enroll more centers; however, this
is not the most economical way to conduct a trial, given the resources needed to
train new centers.

Eligibility criteria

In order to reduce bias and variability in a clinical trial, and therefore increase the
power of the study, it is essential to have well-developed eligibility criteria.
However, these criteria must not be too restrictive as this will result in a smaller
patient population – there could be difficulties with patient recruitment, and
whilst the patient population would be more homogeneous, the generalizability of
the findings would be reduced in the non-trial setting. 

A key aspect of eligibility criteria is to define patients with the disease or condition
under investigation. The disease state must be established using standardized
criteria. Although some diseases are more difficult to define, it should not be left
to subjective clinical assessment as this makes it hard to relate the study findings
to other patients with the condition. In these cases, it might be sensible to use
more than one definition for the disease criteria. 

Eligibility criteria are usually based on: 

• patient characteristics
• diagnostic test results
• disease duration 
• disease severity

Patients must meet all of the inclusion criteria and none of the exclusion criteria.
A general rule is to have one or two inclusion criteria and several exclusion
criteria. In the CHARM trial, for example, the investigators stated two inclusion
criteria and multiple exclusion criteria (see Table 1) [1]. The aim was to include as
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many patients with the disease as possible (in this example, patients with heart
failure), but to exclude those with co-morbidities that might affect outcome (in
this example, stroke, severe aortic, or mitral stenosis) and those in whom safety
may be compromised (in this example, existing severe renal impairment as
candesartan can worsen renal function in certain circumstances).

If particular tests or measurements are to be performed as part of the eligibility
criteria, it is essential to ensure that the results of these investigations are available
prior to randomization of the patient into the study. Stratification or minimization
techniques can be employed at the randomization stage to ensure balance
between groups in important variables that may affect outcome; therefore, it is
important to ensure that these data are available in a timely fashion. For example,
in a study of cystic fibrosis, patients were stratified by their breathing capacity 
(as measured by forced expiratory volume in 1 second) and their atopy status, 
so it was essential that the results of the lung function and skin prick tests were
available at randomization.

Disease status

Some diseases are subject to seasonal factors that affect the timing of patient
selection (eg, immunotherapy studies of hay fever). Other diseases are subject to
variability, and repeated measurements are often required to confirm diagnosis in
these conditions (eg, repeat blood pressure measurements for the diagnosis of
hypertension). It is important to select patients who are ill enough to improve with
the intervention, but some patients might be too ill to participate in the study. 
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Table 1. CHARM (Candesartan in Heart failure – Assessment of Reduction in Mortality and morbidity) 

eligibility criteria [1]. 

NYHA = New York Heart Association.

Inclusion Age ≥18 years

Symptomatic heart failure (NYHA class II–IV for at least 4 weeks’ duration)

Exclusion Serum creatinine ≥265 μmol/L

Serum potassium ≥5.5 mmol/L

Known bilateral renal artery stenosis

Symptomatic hypotension

Women of childbearing potential who are not using adequate contraception

Critical aortic or mitral stenosis

Myocardial infarction

Stroke

Open heart surgery in previous 4 weeks

Use of angiotensin receptor blocker in previous 2 weeks

Any noncardiac disease limiting 2-year survival
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It might also be necessary to consider what effect previous treatments might have
or to actually withdraw a treatment (washout period) before starting the treatment
under investigation. Depending on the length of time a drug stays in the body, 
a specific washout period may need to be defined. For example in CHARM, 
a period of 2 weeks for drugs similar to candesartan was specified [1].

Selecting patients who have not been treated previously is a common requirement,
as previous therapies can mask or reduce the effect of the treatment under
investigation. However, in some chronic diseases (eg, asthma) this will be impractical.
With other studies, withholding treatment can be unethical (eg, in Alzheimer’s
disease or cancer). In these studies, unequal numbers are often allocated to the
treatment and control arms (eg, in a 2:1 ratio) to move quickly and to gain patient
experience with the new drug [2].

Ethical issues

As mentioned previously, it is important not to make the eligibility criteria too
stringent, otherwise there may be difficulty in enrolling sufficient patients – a
balance needs to be achieved between scientific and practical issues. For example,
individuals aged >65 years are frequently excluded from clinical trials because
they are more likely to be taking concomitant medications and might be less
responsive to treatment, more affected by side-effects, and/or more difficult to
evaluate. However, if the treatment or intervention under investigation is
intended to be used in clinical practice by individuals in this age group then they
should be included. 

Special consideration should be given to children or neonates as they can respond
to medications differently to adults. A report by the EU revealed that >50% of
medicines used in children have not have been adequately studied in this age
group [3]; consequently, the EU is developing legislation that will require data on
children to form part of the authorization application for medicines that are to be
used in children.

There are other ethical issues to consider when selecting patients for study
inclusion. For example: repeat visits or tests might be onerous for patients; tests
can be painful or uncomfortable; the study might require the patient to take time
off from work or school; and the study will often require patients to wait in
hospital for tests or for the study drug to be issued from the pharmacy.
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A fundamental consideration in patient selection is to enroll patients who are
likely to comply with the study procedures. Patients must be willing to participate,
and it is essential to take the time to discuss the risks and benefits of the study, 
to explain to the patient what is expected from them, and for them to have the
opportunity to ask questions. Where possible, it is suggested that patients discuss
the study with their family, friends, or primary care physician. Generally, patients
must provide written informed consent to be enrolled in the study [4], except for
in emergency situations where intended or verbal assent is allowed. Ensuring the
patient is adequately informed will minimize dropout rates (patients who choose
not to complete the trial) (see Chapter 9).

Reasons why eligible patients are not selected

Eligible patients might not be selected to enter a trial because of administrative
reasons. For example:

• The patient is unavailable during the screening process.
• Study personnel are unavailable to screen the patient.
• The study drug or intervention is unavailable (eg, if the drug has exceeded

its shelf life or if the pharmacist is unavailable to formulate an infusion).
• The study procedure is unavailable (eg, faulty echocardiography instrument).
• The patient may not be able to attend follow-up visits.

These reasons can usually be avoided by careful planning and organization. 
If large numbers of patients are being excluded due to a particular eligibility
criterion, it is worth considering making small changes to the criteria. This can
make a large difference to recruitment without necessarily affecting outcome or
generalizability. Any changes to the eligibility criteria must, of course, be submitted
as a protocol amendment for ethical review before being implemented.

Conclusion

When designing a clinical trial, careful consideration must be given not only to the
source of patients and the investigators who are going to select the patients, but
also to the disease under consideration and any ethical issues regarding patient
participation. A specific set of eligibility criteria should be used to define the
patient population under study. These eligibility criteria should ensure that the
patients included in the study are representative of patients with a particular
disease or condition. This will ensure that the study findings can be applied to
treat future patients in clinical practice.
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Source and Control 

of Bias

Radivoj Arezina and Duolao Wang

The aim of a randomized controlled trial is to provide unbiased
evaluation of the efficacy and safety of a medicinal product or 
a therapeutic procedure. Unfortunately, the treatment effect
estimates generated in a study are rarely free of all bias. This 
is due to a number of biases or errors that occur during a study
from conception, through conduct, to completion of the trial,
and even beyond the end of the trial when communicating trial
results. These contributing factors can be classified into three
categories: bias, confounding, and random error. In this chapter,
we provide an overview of the ways in which bias can enter at
different stages of a clinical trial and review ways of minimizing
bias in clinical research.

■■❚❙❘ Chapter 6
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What is bias in clinical research?

Bias is an “opinion or feeling that favors one side in an argument or one item in
a group or series; predisposition; prejudice” [1]. In clinical research, bias is
defined as systematic distortion of the estimated intervention effect away from the
truth, caused by inadequacies in the design, conduct, or analysis of a trial [2], 
or in the publication of its results. In other words, in a biased trial, the results
observed reflect other factors in addition to (or, in extreme cases, instead of) the
effect of the tested therapeutic procedure alone. 

The list of potential biases in research is long [3]. A correspondingly large
proportion of the effort and skill in clinical research goes into avoiding bias. It is
commonly accepted that it is impossible to completely eliminate the possibility of
bias. However, it is also recognized that bias can be reduced with, among other
things, careful planning and prudent study design. Although bias is typically
introduced into a trial inadvertently, due consideration should be given to this
problem since it can invalidate research: the mere suggestion that bias is present
is often sufficient to cause the validity of a trial to be questioned. The main types
of bias and ways of reducing such unwanted influences on the study outcome are
listed in Table 1 and described below. 

Selection bias

Selection bias occurs if a systematic difference exists in the way in which study
subjects are enrolled (accepted or rejected) into a trial or in the way that
treatments are assigned to those enrolled, which in turn has an effect on the trial
conclusions. For example, a trial investigator might have reason to believe that
diabetic patients are less likely to respond to a new blood-pressure-lowering drug
and, consequently, tend to include them in the group receiving the established
(control) drug. If the investigator’s assumption proves to be correct, the results
will show an exaggerated treatment difference and the trial conclusions will favor
the new treatment more than they should. 

Prevention of this type of bias depends, to a great extent, on how adequate the
treatment allocation is. This is the main reason for the use of randomization
methods in clinical trials. When randomization is employed properly, all study
subjects are given the same chance of being assigned to each of the study treatments.
Moreover, the treatment allocation in such a trial cannot be influenced by the
investigator. Examples of good methods of treatment randomization include
computer-generated codes, random number tables, and even the toss of a coin.
Inadequate methods of randomization include alternate assignment and assignment
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by odd/even date of birth or hospital number. However, it should be noted that,
even when carried out properly, simple randomization does not guarantee the
elimination of selection bias – it only reduces the possibility of this unwanted effect. 

To further help minimize selection bias, stratification of randomization is used.
This involves patients first being classified into subgroups, or ‘strata’, by one or
more characteristics that may influence treatment response, such as age or
severity of disease. Patients within each stratum are then randomized separately
to ensure that, based on the stratification characteristics, the patients are well-
balanced across the treatment groups. 

With respect to randomization, there are two processes of equal importance:

• creation of a random treatment assignment code
• concealment of that code until treatment allocation occurs

Some investigators working in clinical research appreciate the code-generating
process of randomization but then disregard concealment. Without satisfactory
concealment, even the best, most unpredictable randomization codes may be
undermined. Chalmers et al. reported manifold overestimation of treatment
effect in trials without adequate concealment of treatment allocation [4]. By using
proper concealment procedures, such as keeping individual treatment codes in
sealed opaque envelopes and making them accessible only to authorized
personnel, those who are admitting volunteers into a study are protected from
knowing the treatment allocation that will be used. 

Selection bias can also be introduced if a highly selected group is enrolled into a trial
(eg, in order to ease the demands of patient-recruitment or minimize inter-subject
variability). The treatment effect in such a group might well be different from that

Table 1. Summary of the most common types of bias in clinical trials and methods of bias control.

Type of bias Method of bias control

Selection bias Randomized treatment assignment
Concealment of treatment assignment

Bias in study management Standardized study procedures
Standard equipment
Training and certification of research personnel

Observer ascertainment bias Blinding or masking

Bias introduced by exclusions after randomization Intention-to-treat analysis
Worst-case scenario analysis

Publication bias Prospective registration of clinical trials 
Publication of ‘negative’ trials
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in the actual (target) population of interest. Where it is essential for the study group
to closely reflect the target population, trial protocols should clearly specify and
make mandatory the inclusion of a wide selection of the entire patient population. 

Bias in study management

The interpretation of a randomized controlled trial relies on the assumption that
any differences in outcome are the result of either chance (whose effects can be
quantified) or of inherent differences between treatments. This assumption is
invalid if the treatment groups are not handled equally with regard to all of the
study procedures. 

For instance, consider a trial conducted to compare the absorption of two dosage
forms of a drug: a fast-dissolving tablet absorbed from the tongue and a regular
tablet absorbed from the intestine. If, due to poorly defined study procedures or
noncompliance, the subjects receiving the regular tablet are allowed to lie down
following drug administration, the transit and intestinal absorption will be slowed
and this might distort the overall study conclusions. 

Figure 1. Mean pharmacokinetic profiles for the example bioequivalence study.
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The same might happen if blood samples for pharmacokinetic analysis are not
handled properly. For example, consider an anonymized study where two
formulations of a drug are compared to see if they are bioequivalent. Both
formulations are chemically unstable and break down very rapidly, hence certain
chemicals need to be added to the blood samples as stabilizers. The
pharmacokinetic analysis showed that the test formulation was significantly less
bioavailable than the reference drug (see Figure 1). However, the study debrief
showed that the test-drug blood samples had a lower concentration of stabilizer;
this caused the test drug to break down more quickly than the reference drug and
show falsely lower concentrations when assayed. When the study was repeated
using the same drugs with adequately stabilized blood samples, the mean
concentrations of the two drugs were very similar (Figure 2). 

In order to avoid this type of bias, trials should be conducted according to
standardized written protocols with clearly defined study procedures. Study
personnel must be well trained and certified for particular tasks to ensure that 
the various measurements and assessments are performed identically on every
subject and on each occasion. Study participants should be closely supervised
wherever possible to ensure their compliance and to check that study restrictions
are observed. 

Figure 2. Mean pharmacokinetic profiles for the repeated example bioequivalence study.
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Observer (ascertainment) bias

When knowledge of the treatment assignment (by participants already recruited
into a trial, investigators, or persons who analyze and report trial results) leads to
systematic distortion of the trial conclusions, this is referred to as observer or
ascertainment bias.

The patients’ knowledge that they are receiving a ‘new’ treatment may substantially
affect the way they feel and their subjective assessment. If the investigator is aware
of which treatment the patient is receiving, this can affect the way he/she collects
the information during the trial (eg, he/she asks certain questions). By the same
token, the knowledge of which treatment the patient received can influence the
way the assessor analyzes the study results (eg, when evaluating efficacy by
selecting particular time points that favor one of the treatments over the other). 
In the case of laboratory-related outcomes, the knowledge of treatment assignment
can have an impact on how the test is run or interpreted. Although the impact of
this is most severe with subjectively graded results, such as pathology slides and
photographs, it can also be a problem with more objective tests (eg, laboratory
assays might be run subtly differently by the technician). 

Blinding

The best way of avoiding observer bias is to conduct trials in a blind fashion. 
This means that some or all of those involved in the study (study participants,
investigators, assessors, etc.) are unaware of the treatment assignment. It is
important to recognise the difference between allocation concealment and
blinding. Allocation concealment helps to minimize selection bias by shielding 
the randomization code before and until the treatments are administered to subjects
or patients, whereas blinding helps avoid observer bias by protecting the
randomization code after the treatments have been administered (see Chapter 8).

Blinding or masking, as it is often called, is immensely important for maintaining
the integrity and validity of research results. Nonblinded studies typically 
favor new treatments over established ones. One meta-analysis has shown that
nonblinded studies overestimate treatment effects by 17% [5].

Blinding can be performed by making study participants unaware of which
treatment they are receiving (single blind) or by making both study participants
and the investigator unaware of the treatment assignment (double blind). There is
another level of study blinding called triple blind or total blind, which essentially
means that all those involved in a study, including those responsible for data
analysis, reporting, and study monitoring, have no knowledge of which treatment
is being given to whom. It appears that total blinding is not as common in clinical
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trials as it should be. The benefit of blinding those evaluating and interpreting trial
data (alongside the participants and investigators) is obvious. Similarly, usually
there are no practical considerations as to why we should not blind such
personnel, and we can do this by treatment coding. 

To achieve blinding in a drug trial it should be impossible to distinguish between
the trial medications, and, to achieve this, placebos are used. Placebos are inert
substances that are identical in physical appearance to the active treatment and, 
if taken by mouth (eg, as tablets), they should have the smell and taste of the
active treatment. In the case of an intravenous infusion, the placebo is normally
the vehicle used for the active medication (the medium in which the active drug
would be dissolved). One use of placebos in trials is as a direct comparison with a
new medication (placebo-controlled trials), typically when there is no established
active treatment that is effective and can be used as a comparator.

Achieving blinding

Effective blinding is not always easy to achieve. Patients and investigators may be
clued into whether patients are taking active medication or placebo by different
means. This can happen through accidental or deliberate unmasking. It can also
occur as a result of practical problems in treatment administration, eg, if a patient
bites the tablet and finds that it tastes different. Another source of unmasking is
the fact that side-effects of the active treatment, quite understandably, are often
different from those of the placebo. 

Although most of these problems can be minimized by making trial procedures
more stringent and improving trial participant and personnel compliance, the
challenge of distinguishable side-effect profiles appear to be the most difficult to
solve. It has been suggested that use of a ‘three-arm design’ (involving a new drug,
a reference drug, and a placebo) can help to overcome this problem, whereby the
third ‘treatment’ may make it more difficult for the patients and study personnel
to ascertain the treatment allocation [6]. For instance, even if the patients guess
that they are receiving an active treatment, they may not be able to tell whether
they are on the ‘old’ or new drug. Also, noninert placebos have been used to
achieve the same goal (in particular in antidepressant trials) [7]. Adding a third
treatment or adding the potential for toxicity to placebo (that is, using a noninert
placebo) to avoid unblinding raises some ethical issues. These need to be examined
carefully before such methods are applied to a particular trial. A risk–benefit
assessment should be carried out, taking into account the potential benefits of
properly evaluating the new treatment on the one hand and protecting patients
from any unnecessary harm on the other. 
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Bias introduced by exclusions after randomization

It is intended that all trial participants comply with the trial protocol and complete
the trial accordingly. However, in practice (and in particular during later phases of
drug development), missing data can result from some of the participants dropping-
out before they complete the trial. Also, data might be missing because some of the
scheduled measurements were done incorrectly or, worse, not done at all. Irrespective
of their origin, inappropriate handling of the missing data can lead to bias. For
example, if in a treatment comparison trial the incidence of withdrawals due to
adverse events is much higher with one of the treatments, excluding withdrawn
subjects from the analysis would lead to an underrating of the side-effects of that drug.
Analyses that exclude all subjects who were noncompliant, have missing data, or
were unable to complete their assigned treatment are called per-protocol analyses. 

There are two bias control methods that can be used to minimize the negative
impact that withdrawals and exclusions can have on the interpretation of study
results (eg, as seen in per-protocol analyses).

The first is known as intention-to-treat analysis. In this analysis, all the study
participants we intended to treat are included in the analysis, regardless of whether
they completed the trial according to the protocol or not. The second method is
called worst case scenario analysis. This involves allocating the worst possible
outcomes to the missing subjects or missing time points in the group that shows the
most desired results, and vice versa. Following this, this data set is analyzed to see
whether the new analysis is in agreement with the results of the initial analysis
(which did not account for the missing data). As opposed to the intention-to-treat
approach, which is a way of addressing the issue of noncompliant subjects (who
may or may not have missing data), the worst case scenario analysis is more
specifically used to deal with missing data in a trial. There are other often-
suggested methods for dealing with missing data [8,9], such as ‘last observation
carried forward’ and ‘multiple imputation’ (see Chapter 30). 

Publication bias

It is becoming increasingly apparent that published clinical research data do not
always represent the whole truth. People involved in research, including
investigators, editors, and sponsors, typically prefer positive trial outcomes, 
which is to some degree understandable. What is not understandable is that trials
generating negative or equivocal results are less likely to be published in peer-
reviewed journals, and this can seriously undermine the integrity of clinical research
data [10]. This tendency to favor trials with positive results is called ‘publication bias’. 
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Although there appears to be increasing evidence that failure to publish is not 
a random event [11], the lack of interest in publishing ‘nonpositive trials’ might, at
least partly, be a result of underpowered studies. In such a trial, negative or
equivocal results effectively become indeterminate, which in turn makes them of
little interest to journal editors or the scientific community. 

One way of tackling publication bias is by introducing the compulsory registration
of trials at initiation and ensuring that the results of all trials are published.
Although it remains a long-term goal, at present such a proposal is very
controversial and is the subject of intense debate. Meanwhile, the reader should
bear in mind that published data alone might not always provide sufficient
evidence on which to make a definitive judgment about a particular treatment. 

Conclusion

The types of bias described above are the most common and, arguably, the most
important in clinical research. There are, however, many other biases that can be
introduced in the course of, or after, a trial, and they are comprehensively
described in other publications [3,12]. 

Randomized controlled trials are too often assumed to produce impartial
evidence by eliminating bias. The truth is that randomization, treatment
concealment, blinding, standardized study procedures, and other methods
mentioned in this chapter help to reduce bias, but do not eliminate it completely.
We may only move closer to that goal by raising awareness among scientists,
investigators, peer-reviewers, and readers about the importance of bias control in
clinical research, and by applying bias-control measures wherever possible.

In this chapter, we have only addressed the issue of bias. The two other sources
that could still distort the true estimates of treatment effects, random error and
confounding, are discussed in Chapters 18 and 26 of this book, respectively.
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Randomization

Duolao Wang and Ameet Bakhai

Randomization is the unpredictable allocation of a patient to 
a particular treatment strategy in a clinical trial. When a large
number of patients is involved, simple randomization will
balance the groups in a trial for patient characteristics and
other factors that might bias outcomes (systematic error or
confounding). The remaining differences in efficacy or safety
outcomes between the groups can then be assumed to be due
to the effects of the different treatment strategies or random
error. Randomization is therefore the cornerstone of a well-
conducted clinical trial. In this chapter, we describe and 
explain some commonly used randomization methods 
and their implementation.

■■❚❙❘ Chapter 7
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Why should patients in a clinical trial be randomized?

The randomized controlled trial (RCT) is considered the gold standard for testing
the efficacy of medical treatments [1,2]. A fundamental assumption that forms 
the basis of the RCT is that patients in different groups are similar for characteristics
such as age, gender, social class, time of year of presentation, country of presentation,
and type of hospital. In a large trial involving more than 1,000 patients, these
characteristics should be balanced across each group so that any difference seen
between the groups at the end of the trial is then due to the different treatment
strategies (ie, if patients do better in one group we can assume that this is due to
the treatment effect if not due to random error). This assumption is the basis of
all comparative statistical tests performed in the trial.

To achieve this balance we randomly assign the patients (hence the term
randomized in an RCT) to each treatment strategy so that, for example, men have
an equal chance of being given treatment A or B, people aged over 60 years have
an equal chance of being given treatment A or B, and so on. Simple randomization
is one way of performing this balancing function, but other methods are needed
when the number of patients is small.

Minimizing bias

A further requirement of randomization is that it must not be predictable by the
person assigning patients to the treatment strategies, otherwise there is a chance
that the groups will contain bias. To prevent this, certain methods of ‘blinding’ or
‘masking’ are used so that patients and staff (with the usual exception of the data
and safety monitoring board) are not aware whether treatment A or B is the new
treatment, or even which group patients are in (active or placebo/standard
treatment), until the end of the trial. Physicians and study coordinators providing
the treatments to the patients use a randomization code to find out which
treatment pack has been assigned to each patient (A or B), but the code provides
no information about which treatment is which (active or placebo/standard
treatment). Randomization must be protected by blinding (see Chapter 8) so that
it remains unpredictable.

How should the randomization code be determined?

A randomization code is a list of which treatment a subject should receive. 
It is usually determined by a statistician using computer-generated random
numbers or a random-number table. Some trials use methods for assigning
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subjects according to date of birth (odd or even years), hospital record number, 
or date of screening for the study (odd or even days), but these randomization
methods have a level of predictability, so strictly are not acceptable methods 
of randomization.

Which are the common randomization methods?

The generation of a randomization code can be achieved using one of a variety 
of procedures. Once a code and method of allocation are decided on, their rules
must be adhered to throughout the study. Common types of randomization
methods are [1,2]: 

• simple randomization
• block randomization
• stratified randomization
• minimization or adaptive randomization

A combination of these methods can also be used, and other special methods do
exist. Let us now discuss the more common randomization methods listed. 

Simple randomization

The most common form of randomization, referred to as simple or complete
randomization, is a procedure that makes each new treatment allocation without
regard to those already made. The principle of this method for a trial with two
treatments can be demonstrated by deciding treatment assignment by tossing an
unbiased coin, eg, heads for treatment A and tails for treatment B. When the next
subject is to be assigned, previous allocations are not considered.

This method is easy to implement and unpredictable. However, as it is somewhat
inconsiderate to previous allocations, it can often produce small inequalities
between treatment groups, eg, 200 women were assigned to treatment A and 205
women to treatment B. In a large trial this makes only a small difference, but in
smaller trials at an early clinical stage that involve only a few dozen subjects, these
inequalities could have a substantial impact.

Example

Consider an example trial with 12 patients. While there is an equal chance of
being allocated treatment A or treatment B, the number of subjects randomly
assigned to each treatment ends up being 5 and 7, respectively (Table 1). This
imbalance in the initial allocation will result in significant difficulties in the
statistics and possibly a lower power for detecting differences between the
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treatments. Therefore, in cases where there are few patients, there is a need for
other methods of randomization.

Block randomization

The block randomization method, also known as permuted-block randomization,
is a popular method in clinical trials. A block randomization method can be used
to periodically enforce a balance in the number of patients assigned to each
treatment. The size of each block of allocations must be an integer multiple of 
the number of treatment groups, so with two treatment strategies the block size
can be either 2, 4, 6, and so on. A block randomization can be implemented in
three steps: 

Step 1: Choose the block size and the number of blocks needed to cover 
the number of patients in the study.

Step 2: List all possible permutations of treatments in a block.

Step 3: Generate a randomization code for the order in which to select each block.

Example

Consider a clinical trial comparing treatments A and B in 24 patients. Here, we
should choose a block size of 4 because the sequence would become predictable
with blocks of 2, and block sizes of 6 or above are too large for this small sample
size. Using this block size we must ensure that, after every fourth randomized
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Table 1. Example of simple randomization.

Subject Treatment

1 A

2 B

3 A

4 A

5 B

6 B

7 B

8 B

9 A

10 A

11 B

12 B
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subject, the number of subjects in each arm is equal. Therefore, each block must
contain two patients on treatment A and two on treatment B.

Step 1: Given a sample size of 24 and using a block size of 4, we need six blocks.

Step 2: There are six possible permutations that allow two As and two Bs 
in each box: AABB, ABAB, ABBA, BAAB, BABA and BBAA.

Step 3: The randomization code for blocks can be generated by producing 
a random-number list for permutations 1–6.

Table 2 provides a listing of random permutations of A and B for each subject
using this method. Note that after every four patients there is a balance of subjects
between treatments A and B. If we need more than six blocks (or have over 
24 patients), we can continue sampling more of the six possible block permutations
shown above. The procedure is repeated until all patients are randomized.
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Table 2. Example of block randomization using a block size of 4.

Block Permutation Subject Treatment

1 6 1 B
2 B
3 A
4 A

2 4 5 B
6 A
7 A
8 B

3 3 9 A
10 B
11 B
12 A

4 1 13 A
14 A
15 B
16 B

5 2 17 A
18 B
19 A
20 B

6 5 21 B
22 A
23 B
24 A
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The balance forced by blocking is especially important in long-term trials if:

• recruitment is slow 
• the type of patients recruited in the trial changes during the 

enrollment period
• the trial may be stopped early for safety or efficacy reasons
• routine practice changes for patients in both groups during the trial

The only disadvantage of blocking is that every fourth patient, and occasionally
every third patient (when the sequence is AABB or BBAA), becomes predictable
if the treatments are not masked and the previous allocations of that block 
are known.

Stratified randomization

Stratified randomization takes the balance correction suggested by blocking one
step further. Not only are the numbers with treatments A and B balanced
periodically, but a balance is also constantly maintained for a set of predetermined
important factors that may impact on the prognosis of the patient, such as age,
gender, diabetes, severity of illness, or geography. If prognostic factors are not
evenly distributed between treatment groups it can give the investigator cause for
concern, although statistical methods, such as the Cox regression model, are
available that allow for such a lack of comparability. 

Example

Stratified randomization is implemented in three steps. We can illustrate the
procedures using the CF-WISE (Withdrawal of Inhaled Steroids Evaluation 
Study in Patients with Cystic Fibrosis) trial conducted at the Clinical Trials and
Evaluation Unit of the Royal Brompton Hospital, London, UK. CF-WISE was 
a randomized placebo-controlled trial designed to test the feasibility and safety 
of periodically withdrawing inhaled corticosteroids (ICS) in 240 children and
adults with cystic fibrosis who were already taking ICS. The two treatment
strategies involved a return to either ICS treatment after withdrawal (A) or to
placebo (B). The primary endpoint was the time to first respiratory exacerbation.

Step 1: Choose the prognostic factors that could impact on the primary endpoint.

Experience of earlier trials and literature show that atopy, forced
expiratory volume within 1 second (FEV

1
), and age are the most

important determinants of time to first respiratory exacerbation.
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Step 2: Determine the number of strata for each factor.

When several prognostic factors are chosen, a stratum for
randomization is formed by selecting one subgroup for each factor
(continuous variables such as age are split into meaningful categorical
ranges). The total number of strata is therefore the product of the
number of subgroups in each factor. Table 3 describes the strata for
stratified randomization in the CF-WISE study. In this example, the
total number of strata is 2 (atopy) × 3 (FEV

1
) × 2 (age) = 12.

Step 3: Generate randomization codes.

This is done by generating a randomization list for each stratum and then
combining all the lists. Within each stratum, the randomization process
itself could be simple randomization, but in practice most clinical trials
use a blocked randomization method. In our example, three blocks 
of size 4 are shown for stratum 1. The key with this method is to choose
the most important prognostic factors and keep the number of strata to
a minimum so that randomization using blocks remains unpredictable.

Table 3. Strata definitions for the CF-WISE (Withdrawal of Inhaled Steroids Evaluation Study in Patients 

with Cystic Fibrosis) study show three factors for stratification.

Stratum Atopy FEV
1

(%) Age (years) Randomization

1 Positive 40–60 <17 ABAB, BABA, AABB...

2 Positive 40–60 ≥17

3 Positive 61–80 <17

4 Positive 61–80 ≥17

5 Positive 81–100 <17

6 Positive 81–100 ≥17

7 Negative 40–60 <17

8 Negative 40–60 ≥17

9 Negative 61–80 <17

10 Negative 61–80 ≥17

11 Negative 81–100 <17

12 Negative 81–100 ≥17
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Minimization

Minimization – also called an adaptive randomization procedure – takes the
approach of assigning subjects to treatments in order to minimize the differences
between the treatment groups on selected prognostic factors. This method starts
with a simple randomization method (the first of our examples) for the first
several subjects, and then adjusts the chance of allocating a new patient to a
particular treatment based on existing imbalances in those prognostic factors [2]. 

Using minimization with the CF-WISE study as an example, if treatment A has
more atopy-positive than atopy-negative patients then the allocation scheme is
such that the next few atopy-positive patients are more likely to be randomized to
treatment B. This method is employed in situations involving many prognostic
factors, and patient allocation is then based on the aim of balancing the 
subtotals for each level of each factor.

Example

Table 4 shows a hypothetical distribution of 100 patients according to treatment
and three prognostic factors in the CF-WISE study. Consider that the next patient
is atopy positive, has an FEV

1
<60% and is aged 15 years old. To find the number

of similar patients already assigned to each treatment arm, the patients in the
corresponding three rows of Table 4 are added:

Sum for A = 22 + 19 + 25 = 66

Sum for B = 21 + 18 + 26 = 65

Minimization requires that the patient be given the treatment with the smallest
marginal total, which in this case is treatment B. If the sums for A and B are equal,
then simple randomization would be used to assign the treatment.

Table 4. Treatment assignments based on three prognostic factors for 100 patients.

FEV
1

= forced expiratory volume within 1 second.

Factor Level Treatment A Treatment B Subtotal Total

Atopy Positive 22 21 43
Negative 28 29 57 100

FEV
1 
(%) 40–60 19 18 37

61–80 20 21 41
81–100 11 11 22 100

Age (years) <17 25 26 51
≥17 25 24 49 100
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Although this method is mathematically uncomplicated, it has not been widely 
used because of the practical difficulties associated with implementing it (some
patient characteristics must be collected and processed before randomization can
be performed, hence slowing down the entire process). However, with increasing
use of computers and, more recently, interactive voice-response systems, this
method is gaining popularity, particularly in large trials, thereby removing the
need for prespecified randomization lists; and to minimize influence due to
imbalances in patients and baseline characteristics of patients.

Conclusion

Several commonly used methods of randomization have been described here, but
there are others. Whichever method is used, the purpose of randomization
remains the same: to validate the assumption that the differences seen in the
outcomes are likely due to differences in the treatments and not the baseline
characteristics of the patients.
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Blinding

Ameet Bakhai, Sonia Patel, and Duolao Wang

Randomization can minimize the influence of bias in clinical
trials by balancing groups for various characteristics. Bias can
still occur, however, if study personnel and patients know the
identity of the treatment, due to preconceptions and subjective
judgment in reporting, evaluation, data processing, and statistical
analysis. To minimize these biases, studies should be blinded, 
or masked, so that all participants are unaware of whether the
subjects are assigned to the new or standard therapy during 
a trial. In this chapter, we discuss different study protocols 
that can be used to blind either the patients only, both patients
and investigators, or a combination of investigators, patients,
sponsors, trial committees, and other personnel.

■■❚❙❘ Chapter 8
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Blinding or masking?

In clinical trials, the term ‘blinding’ has been defined as an experimental
methodology in which groups of individuals involved in a trial are made unaware
of which treatment the participants are assigned to. The term blinding has been
challenged because it should be reserved to describe visual impairment. The term
‘masking’ is therefore used by some research organizations such as the US
National Institutes of Health. Terms such as single blind and double blind are still
ingrained in trial terminology, making it hard to replace them completely.
Here, we will use the term blinding, so as to be able to appreciate the older
definitions, although we would encourage the use of masking otherwise.

Why do we need blinding in studies?

Most human beings have opinions and preconceptions. When these opinions are
unsubstantiated by evidence, individuals can be said to be biased. In a trial,
knowledge of which treatment a patient is assigned to can lead to subjective and
judgmental bias by the patients and investigators. This bias can influence the
reporting, evaluation, and management of data and can distort statistical analysis
of the treatment effect [1,2]. In practical terms, it is extremely difficult to
quantitatively assess such bias and its impact on the evaluation of treatment effect.

Bias can occur in clinical trials because, generally, patients wish to be given the
latest new treatments and doctors hope to be involved in a study that will succeed. 
Both patients and doctors want the effects of a new treatment to be more favorable,
which can result in the underreporting of side-effects. It is therefore critical to
neutralize such bias by masking the identity of treatments so that trial participants
are blinded to the nature of the treatment.

At each stage of a trial, there are a variety of individuals who can introduce bias.
These individuals include patients, principal investigators, physicians, surgeons,
sponsors, and other healthcare professionals, local study coordinators (who may
also be principal investigators themselves), core labs reporting on scans or blood
samples, trial statisticians, and committees such as the adjudication or data
monitoring and safety committee (DMSC). Therefore, each of these groups can
be blinded.
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What forms of blinding are used in a randomized study?

With respect to blinding, there are four general types of blinded studies in clinical
trials [2–4]:

• open/unblinded
• single blinded
• double blinded
• triple blinded

Open/unblinded studies

On some occasions it might not be possible to use blinding. For example, if the
new intervention is a surgical treatment and is being compared with tablets then
the difference between the two is difficult to hide. Such studies might need to be
unblinded as far as the patients and caregivers are concerned, and are known as
open or unblinded studies. The advantages of unblinded studies are that they are
simple, fairly inexpensive, and a true reflection of clinical practice. 

The disadvantages of knowing which treatment is being given are numerous.
Patients may underreport adverse effects of the new treatment. Another
disadvantage is the possibility that local investigators might supply different
amounts of concomitant treatments (eg, only giving analgesics to the surgical
group). Therefore, some biases are unbalanced, and this must be appreciated
when examining the results. 

One compensation that could be made for this study design would be to blind 
the adjudication committee, statistics teams, and, where possible, core labs.
An example of such a study would be to compare medical treatments for coronary
artery disease with surgical treatments.

Single-blinded studies

In single-blinded studies, the patient should be unaware of which treatment they
are taking, while the investigators are aware of whether the treatment is new,
standard, or placebo [2]. The advantage here is that the design is relatively simple
and allows investigators to exercise their clinical judgment when treating
participants. The disadvantage is that patients might under- or overreport
treatment effects and side-effects, based on some influence or response from 
the investigators. Investigators may give advice or prescribe additional therapy to
the control group if they feel that these patients are disadvantaged in comparison
to the active group, and so a number of subtle biases could be introduced either
in favor of or against the new treatment depending on the investigators’ opinions.
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This approach might benefit treatments that have fewer side-effects. However,
side-effects may be less because the treatment is less clinically effective. Safety
studies often have a single-blind design that allows investigators to detect 
side-effects more readily.

Double-blinded studies

In double-blinded studies, neither the patient nor the investigator knows the
identity of the assigned intervention [2–4]. A number of biases are thus reduced,
such as investigators’ preconceptions of the treatments used in the study. This
reduces the ability of the investigators to monitor the safety of treatments, so a
DMSC must regularly review the rate of adverse events in each arm of the trial.
Operating these committees is difficult, as they must meet regularly enough to be
able to detect differences promptly, avoiding needless further harm to patients,
while avoiding early termination of a trial due to a chance difference.

What specific problems do double-blinded studies have?

Double-blinded studies are complex and their validity depends on the investigators
and participants remaining blinded. A study of a drug is easily unblinded if the
medications are not identical in appearance. Although most patients only receive
one drug – unless they are involved in a crossover study, where each participant
takes both the new and standard treatments – they often meet and could compare
pills and tablets. Medical staff also have the opportunity to compare the
medications of both groups, and can unblind the study. It is therefore important to
use carefully matched medications, especially in crossover studies. 

To prevent imperfect matching, a panel unconnected with the study should carry
out a pre-test by comparing samples of the drugs. Perfect matches are rare, and
imperfect matches are tolerated so long as they do not reveal the identity of the
agent. Dyes such as vanilla can mask a distinctive odor, and quassin will give
preparations a bitter taste that masks flavor and discourages the patient from
biting the tablets in half, but it is usually best to avoid such extreme measures. 
The ideal method of blinding is to use agents that appear identical by formulating
them appropriately or by enclosing them in identical capsules. 

Triple-blinded studies

In triple-blinded studies, as well as the investigators and participants, all members
of the sponsor’s project team (eg, the project clinician, statistician, and data
manager), and even the DMSC, are blinded [2]. This lessens the chance that the
DMSC will stop the trial early in favor of either treatment, and makes evaluations
of the results more objective. However, this hampers the DMSC’s ability to
monitor safety and efficacy endpoints, and some investigators might feel
uncomfortable when participating because there is no one to oversee the results
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as they accrue. Triple blinding is appropriate for studies in which the risk of
adverse events due to the new or standard treatment is low, and should not be
used for treatments where safety is a critical issue. Due to the reduced ability of
the DMSC to see trends early, recruitment might need to continue until statistical
significance is reached for either clinical effects or adverse events. 

Coding of drugs

Drug treatments involved in a study are usually known by a code (eg, study drug,
identification batch 62, number 29), which is recorded with a unique patient
number. This code prevents knowledge of whether the drug is the new/standard
treatment or a placebo. Many drugs can still be recognized by specific side-effects,
such as flushing of the face or a metallic taste in the mouth. If several participants
with a similar drug code experience the same side-effects then this could unblind
the study. Therefore, unique codes might be needed for each patient, but in large
studies the use of unique codes might not be practical. In emergency situations,
for instance when patients or investigators do not have access to their own
treatment, investigators might have to ‘borrow’ medication from another
identically coded patient until further stocks arrive.

Unblinding studies

Accidental unblinding might occur, for example, when the distribution center fails 
to remove all of the drug identification packing slips from the cartons, or if a blood
or imaging laboratory mistakenly sends the investigators results for the
participants sorted by treatment. In emergency situations it might be important
for the attending investigator to know which treatment the patient is taking, but
in most emergencies the medication can be withdrawn without breaking the
blinding, or the specific investigator can be informed of the code without the
participant or principal investigator being informed. 

Methods for fast and efficient unblinding should be in place with clear guidelines
as to when it is appropriate. For example, each medicine bottle used in the study
could have a tear-off strip that can be kept in the pharmacy and opened in an
emergency in order to reveal the identity of the drug. Care should be taken to
ensure that the label cannot be read through the seal.
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Assessing trial blindness

The degree to which the blinding was maintained in a study can be estimated by
asking the patients to guess which group they were assigned to. If the mean result
of the guesses is close to being 50% correct, the study was well blinded. A similar
enquiry could be made of the patients’ study investigators also.

Conclusion

The blinding of studies requires careful planning and constant monitoring to
ensure that blinding is maintained, whilst also ensuring that patient safety and the
validity of trial results are not compromised. Furthermore, it is vital that all study
protocols clearly document who was blinded in the study and how they were
blinded, as this can have a significant impact on the value of the study results.
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Sample Size and Power

Duolao Wang and Ameet Bakhai

The aim of a well-designed clinical trial is to ask an important
question about the effectiveness or safety of a treatment and 
to provide a reliable answer by performing statistical analysis
and assessing whether an observed treatment difference is
due to chance. The reliability of the answer is determined by
the sample size of the trial: the larger a trial, the less likely
we are to miss a real difference between treatments by
chance. In this chapter, we review the issues that determine
an appropriate sample size for a randomized controlled trial.

■■❚❙❘ Chapter 9
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What is ‘sample size’ for a randomized study?

The sample size of a randomized controlled trial (RCT) is the number of subjects
that are to be enrolled in the study. Choosing the right sample size is critical for a
study, and is based on key assumptions: the size of the benefit we anticipate with
the new treatment compared to standard (or placebo) treatment (the ‘expected
treatment effect’); and the amount of certainty we wish to have with which to
capture the treatment benefit (the ‘power’ of the study). 

The larger the sample size, the better the power with which to detect a treatment
effect, which means that smaller treatment effects can be detected as statistically
significant. In the same way, the smaller the sample size, the less power we have
with which to detect a treatment effect, meaning that the effect must be greater in
order to be detected as significant. The calculation used to find the required sample
size for a trial is also influenced by the trial’s design, so the method by which the
primary outcome is to be determined must also be clarified in advance of
determining the sample size.

Why do we have to choose a sample size?

When resources are limited we must decide how best to invest them in order to
maximize the benefits received. For example, should we use treatment X or
treatment Y? To answer this question, we need to decide how hard we will look
for the answer. Until we do, people will continue to be given or refused a
treatment without evidence. We might decide that it is only worth looking at the
question if we are fairly likely to detect a 10% improvement with the new
treatment. To improve the chance that such a difference is detected (if it exists)
we have to choose the sample size wisely, based on realistic initial assumptions.
More importantly, it is unethical to carry out a study that is unlikely to capture a
real difference since we will have spent precious resources on performing a study
for no gain. From this, we can appreciate that choosing an appropriate sample size
for a study is dependent on good judgment, which is critical to a trial’s success.

What factors determine the sample size?

Several factors are considered when determining the appropriate sample size to
use for an RCT [1,2]:

• the expected summary measure of the primary endpoint (such as event
rate) in the control or standard treatment arm of the trial
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• the smallest treatment effect or benefit that we are trying to detect
• the significance level at which we will reject the null hypothesis that 

there is no difference in the treatment effects 
• the power with which we want to detect an effect
• the design of the study (parallel or crossover, etc.)
• the expected dropout rate of subjects during the study

Example

An RCT is planned to evaluate the effect of a new drug on reducing the death
rate, at 12 months’ follow-up, of subjects with severe coronary heart disease.

Determine the expected event rate in the control arm

To estimate the expected rate of death at 12 months (the mortality rate) in the control
group, we must review previous studies and registries of subjects with severe coronary
disease. In this example, the mortality rate at 12 months is 12%, denoted by π

1
. 

Evaluate the smallest treatment effect that is clinically worth detecting

When determining the size of a clinically relevant treatment effect, it helps to
systematically review the literature on previous studies and to discuss trial design
with experts. In this example, the mortality rate seen in the treatment group might
be 10% (denoted by π

2
). Therefore, the absolute treatment effect that we are trying

to detect is 2% (12%–10%), denoted by δ. At this point in the trial it is not known
whether the new drug will be beneficial or not, but we need enough subjects enrolled
in the trial to have a good chance of being able to detect such a difference. By
‘detect’, we mean that if a treatment benefit is seen, it should be of such a magnitude
to be statistically significant (ie, it should have a calculated P-value <0.05).

Determine the significance level for rejecting the null hypothesis

(Type I error) 

Consider a study that is performed on all individuals in the world who have severe
coronary disease. The study finds that the mortality rate for the new treatment 
is the same as that for the standard treatment, so in this case we would say there is
no real difference due to the new treatment. Imagine that we then do an RCT on a
sample of the whole suitable population (those with severe coronary heart disease)
and that we see a statistically significant difference between the mortality rates for
the two treatments. The RCT result would therefore be a false-positive result,
which is also known as a Type I error. By setting a significance threshold of 0.05, the
chance of seeing this false-positive is 5%, ie, there is a Type I error threshold of 5%.
More subjects will be needed in the study if we want a lower rate for these ‘false
alarms’. Conventionally, a level of 5% is chosen and is denoted by the term α.
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Choosing the power of a trial (Type II error)

Consider the reverse situation to the above, that is, in the study on the whole
population the new treatment produces a 2% absolute reduction in the mortality
rate and in our RCT we did not find a statistically significant difference. We would
call this a false-negative result, or a Type II error. Conventionally, the Type II
error rate is set at 20%, and this is represented by the constant β. The power of 
a study (the ability to find a significant difference if it exists) is 100% – β, which in
this case is 100% – 20% = 80%. 

The higher we choose to set the power, the more subjects we will need in the
study. Using a power of 80% (in this case to capture a 2% minimum benefit 
as significant), there is a one in five chance of failing to detect the difference. 
This might appear high, but the chance of missing larger effects is smaller. 
It should be noted that the error rate for a Type I error is set lower than that for
a Type II error since in medicine we conventionally have a higher threshold for
switching to a new treatment than for keeping the traditional treatment.

Study design

The calculation of the sample size is dependent on the design of the study. 
A standard parallel arm RCT, with the standard treatment group acting as the
control, will require more subjects than a ‘before and after treatment’ type of
study in which the subjects act as their own controls. Even with a standard RCT,
as in our example, we might choose to have two subjects on the new treatment for
every subject on the standard treatment in order to give us more safety
information and experience with the new treatment. If the ratio is higher than 1:1,
more subjects will be required. A further component of trial design is whether the
outcome is a categorical event such as death, a continuous variable such as
cholesterol level, or the time to the first event, as in a survival analysis. The
features of these outcomes will dramatically influence the sample size. In our
example, the event of interest is survival (or mortality) at 12 months, a relatively
simple, clear, and meaningful endpoint.

To calculate the sample size we can apply the equation shown in Figure 1. In our RCT
we can see that a sample size of 3,842 subjects is required. For any combination of
the four basic elements (α, β, π

1
and δ) there is a corresponding number of patients

per group. Figure 2 shows how the number of patients per treatment group varies
with respect to π

1
and δ while α and β remain at 5% and 20%, respectively.

The most important observation made from this figure is that the number of patients
required per treatment group decreases as the smallest treatment effect to be detected
increases. For example, for π

1
= 50%, as δ changes from 10% through 20%, 30%,

and 40%, the sample size decreases from roughly 500 through 100, 50, and 25.
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Taking subject dropout into account

During any clinical study, subjects might leave the study due to a variety of
reasons, such as loss to follow-up, noncompliance with treatment, or moving away
geographically. The sample size should therefore be increased to allow for this. 
If our RCT has a likely dropout rate of 20% (a ratio of 0.20) within the first year
of the trial, the sample size per group should be adjusted accordingly, ie, 
3,842 / (1 – 0.20) = 4,803. Our RCT therefore requires a total of 9,606 subjects, or
4,803 subjects in each treatment group.

Are negative trials due to small sample sizes?

A negative clinical trial is a trial in which the observed differences between the
new and standard treatments are not large enough to satisfy a specified
significance level (Type I error threshold), so the results are declared to be not
statistically significant [2]. With the benefit of hindsight, analyses of negative
clinical trials have shown that the assumptions chosen by investigators often lead
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Figure 1. Calculating the sample size. The following formula can be used to calculate the sample size 

that is required in each arm of the example randomized controlled trial.

α = the Type I error rate
β = the Type II error rate
π

1
= the expected event rate in the control group

π
2

= the expected event rate in the treatment group
π = (π

1
+ π

2
) / 2

δ = π
1

– π
2

z (α / 2) = constant from the standard normal distribution depending on the value of α
z (β) = constant from the normal distribution depending on the value of β

For this example:
α = 5% = 0.05
β = 20% = 0.20
π

1
= 12% = 0.12

π
2

= 10% = 0.10
π = (π

1
+ π

2
) / 2 = (12% +10%) / 2 = 11% = 0.11

δ = π
1

– π
2

= 12% – 10% = 2% = 0.02
z (α / 2) = 1.96
z (β) = 0.842

Therefore for our RCT, a sample size of 3,842 subjects is required for each group.

[ z (α / 2) √2π (1 – π) + z (β) √π
1
(1 – π

1
) + π

2
(1 – π

2
) ]2

n =
δ2

[ 1.96 √2 x 0.11 (1 – 0.11) + 0.842 √0.12 (1 – 0.12) + 0.10 (1 – 0.10) ]2

n = 
0.022

= 3,842
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them to choose a sample size that is too small to offer a reasonable chance of
avoiding a false-negative error (a Type II error). 

Not all negative trials are due to insufficient power. In some cases it might be that
the event rate in the control group was lower than expected or that there were
confounding factors, such as changes to routine treatment methods during the
duration of the study. A branch of medical statistics known as meta-analysis
combines the results from many such small studies to try to estimate a true mean
effect more closely. If this analysis shows that the new treatment has a favorable
benefit, then this should be verified by performing a larger, definitive RCT. However,
one must always take into consideration the outlay of resources required to realize
the potential benefit, and even then, large RCTs might produce unexpected results.

Figure 2. The relationship between the number of patients required per treatment group and the smallest

anticipated treatment effect, with a 5% significance level and 80% power.
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So is that it – just apply the formula?

Statisticians have developed various methodologies for determining sample sizes,
depending on the number of treatments compared, the type of primary endpoint
measured, the statistical analysis method used to analyze outcomes, and the design
of the study. Detailed formulas for various endpoints can be found in reference [3]. 

When determining the sample size it is wise to finalize the main objective of the
protocol and then to look at a range of assumptions by working with a medical
statistician. This approach will suggest a range of sample sizes and a balance can
then be struck between the ideal statistical power, the available resources, and the
length of time before the sample size can be finalized. Even then, interim analyses 
of overall event rates during an RCT (at this point in the trial we are still unaware
of event rates in each treatment group) will provide a guide as to whether the
sample size needs to be altered as the RCT proceeds. If event rates are measured
by treatment arm during the course of a study, the data and safety monitoring
board might recommend the early termination of the study if a large benefit or
element of harm is seen with the new treatment.

Conclusion

The sample size is the most important determinant of the statistical power of 
a study, and a study with inadequate power is unethical unless being conducted as
a safety and feasibility study. However, the calculation of sample size is not an
exact science. It is therefore important to make realistic and well-researched
assumptions before choosing an appropriate sample size. This sample size should
account for dropouts, and there should be a consideration for interim analyses to
be performed during the study, which can be used to amend the final sample size.
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Crossover Trials

Duolao Wang, Ulrike Lorch, and Ameet Bakhai

Crossover trials are designed so that each recruited patient
receives both active and control treatments in either order
for a specified duration, with a ‘washout’ period between
treatments when no treatment is administered. In such trials,
patients act as their own controls, therefore fewer patients
are required to evaluate the effects of different therapies
than in a trial with a parallel design. There are also limitations
to the crossover design, however, and here, in this chapter, we
discuss the advantages and disadvantages of crossover trials.

■■❚❙❘ Chapter 10
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What is a crossover trial?

There are two commonly used types of study design in clinical research: parallel
and crossover. In a parallel study design, each subject is randomized to one and
only one treatment. Most large clinical studies adopt this approach. On the other
hand, in a crossover trial, each subject receives more than one treatment in a
specified sequence. In other words, a crossover trial is a study that compares two
or more treatments or interventions in which subjects, on completion of a course
of one treatment, are switched to another. This effectively means that each subject
acts as his/her own control. The fundamental assumption of crossover trials is that
patients usually have a chronically stable condition that will not vary between
when they are taking the first and second treatments. Therefore, crossover trials
are, by necessity, short-term trials. 

Typically, each treatment is administered for a selected period of time and, often,
there is a ‘washout’ or ‘restabilization’ period between the last administration of
one treatment and the first administration of the next treatment, allowing the
effect of the preceding treatment to wear off. Where possible, allocation of the
treatment sequences in crossover trials is a randomized, blinded process. 

Example study 1: Bioequivalence evaluation of two brands 

of cefuroxime 500 mg tablets (Julphar’s Cefuzime® and

GlaxoSmithKline’s Zinnat®) in healthy human volunteers [1]

Cefuroxime axetil is a semisynthetic, broad-spectrum cephalosporin antibiotic for
oral administration. A single-dose, two-treatment crossover design was carried
out to evaluate the bioequivalence between two varying oral formulations of 
500 mg cefuroxime axetil in 24 healthy volunteers. The two formulations used
were Cefuzime as the test product and Zinnat as the reference product. 

Each treatment was administered to subjects after an overnight fast on two
treatment days separated by a 1-week washout period. After treatment
administration, serial blood samples were collected for a period of 8 hours.
Various pharmacokinetic parameters including AUC

0–t
, AUC

0–∞
, C

max
, T

max
, T

1/2

and λ were determined from plasma concentrations of both formulations. 
The results demonstrated that Cefuzime was bioequivalent to Zinnat since the
90% confidence intervals for the test/reference ratios of the relevant
pharmacokinetic parameters were within the bioequivalence acceptance range of
80–125% (see Chapter 13 for more about bioequivalence studies).
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Example study 2: Low-dose oral contraceptives and acquired

resistance to activated protein C: a randomized crossover study [2]

A randomized crossover trial was carried out to assess how the use of second-
generation oral contraceptives (treatment A: 150 mg levonorgestrel and 30 mg
ethinylestradiol) and third-generation oral contraceptives (treatment B: 150 mg
desogestrel and 30 mg ethinylestradiol) varies with respect to their resistance to
the anticoagulant action of activated protein C (APC). Thirty-three healthy
female volunteers between the ages of 18 and 40 years and without menstrual
irregularities were assigned the two oral contraceptive preparations in random
order (AB or BA). 

The first oral contraceptive (A or B) was used for two consecutive menstrual
cycles (Period 1) and, after a washout of a further two menstrual cycles (much
longer than the half-life of each preparation), the volunteers were switched to the
second preparation (B or A) for two cycles (Period 2). Blood samples were
obtained between days 18 and 21 of all six menstrual cycles – one at baseline
before starting either treatment, two during administration of the first
preparation, one during the last cycle of the washout period, and two during
administration of the second preparation. The study concluded that, compared
with levonorgestrel (A), the desogestrel-containing oral contraceptive treatment
(B) conferred significant additional resistance to APC. A summary of the key
features of the two crossover studies is given in Table 1.

Table 1. A summary of the key features of two example crossover studies.

Study 1 Study 2

Design 2 × 2 crossover 2 × 2 crossover

Objective Bioequivalence evaluation Efficacy assessment

Endpoint Pharmacokinetic parameters Plasma concentration of activated protein C
(AUC

0–t
, AUC

0–∞
, C

max
, T

max
, T

1/2
, and λ)

Treatment A 500 mg Cefuzime tablets 150 mg levonorgestrel and 30 mg ethinylestradiol

Treatment B 500 mg Zinnat tablets 150 mg desogestrel and 30 mg ethinylestradiol

Sequence 1 AB AB

Sequence 2 BA BA

Period 1 1 day 2 consecutive menstrual cycles 

Period 2 1 day 2 consecutive menstrual cycles 

Washout period 1 week 2 consecutive menstrual cycles

Sample size 24 subjects 33 subjects

Conclusion Bioequivalence between A and B Lower efficacy of B than A
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Classification of crossover trials

Crossover trials are classified according to the number of treatments given to a
subject and according to whether a given subject receives all (complete crossover)
or just some (incomplete crossover) of the study treatments. 

The simplest crossover design is a two-treatment, two-period crossover trial in
which each subject receives either the test (A) or reference (B) treatment in 
the first study period and the alternative treatment in the succeeding period.
These trials are often referred to as 2 × 2 or AB/BA trials. The order in which the
treatments A and B are administered to each subject is random; typically, half the
subjects receive the treatment in the sequence AB and the other half in the
sequence BA. An example of a standard 2 × 2 crossover design is given in Figure 1.

Where appropriate, the crossover design can be extended to include more than
two treatments per subject in consecutive periods or more than two sequences. 
If a trial has p sequences of treatments administered over q different dosing
periods, the trial is referred to as having a p × q crossover design. 

Table 2 lists some commonly used higher-order crossover designs. Each design
depends on the number of treatments to be compared and the duration of 
the study [3].

❘❙❚■ Chapter 10 | Crossover Trials
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Figure 1. A standard two-sequence, two-period crossover design.
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Advantages of crossover trials over parallel studies

Since each subject in a crossover trial acts as his/her own control, there is an
assessment of both (all) treatments in each subject. This means that treatment
differences can be based on within-subject comparisons instead of between-subject
comparisons. As there is usually less variability within a subject than between
different subjects, there is an increase in the precision of observations.
Therefore, fewer subjects are required to detect a treatment difference. If N

parallel

is the total number of subjects required for a two-way parallel trial to detect 
a treatment effect (δ) with 5% significance and 80% power, then the total
number of subjects N

crossover
required for a 2 × 2 crossover trial to detect the same

effect (δ) is approximately:

N
crossover

= (1 – r) N
parallel

/ 2

where r is a correlation coefficient among the repeated measurements of the
primary endpoint in a crossover trial. The above equation indicates that as the
correlation increases towards 1, fewer subjects are needed for a crossover trial.
Figure 2 illustrates sample sizes for a crossover trial for some selected values of r
and the sample size (N

parallel
= 100) required by a parallel design trial for detecting

the same clinical effect. The graph shows that:

• A crossover trial only needs half the sample size of that used in 
a parallel trial if there is no correlation among repeated measurements 
of the primary endpoint.

• If the correlation coefficient is 50%, a crossover trial only needs 
a quarter of the sample size of a parallel design.

• Sample size can be drastically reduced in a crossover trial if the 
correlation increases towards 1.

Clinical Trials: A Practical Guide  ■❚❙❘
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Table 2. Examples of high-order crossover trial designs.

Design type Order Treatment sequence

Two-sequence dual design 2 × 3 ABB, BAA

Doubled design 2 × 4 AABB, BBAA

Balaam’s design 4 × 2 AA, BB, AB, BA

Four-sequence design 4 × 4 AABB, BBAA, ABBA, BAAB

Williams’ design with three treatments 6 × 3 ABC, ACB, BAC, BCA, CAB, CBA

3 × 3 Latin square design 3 × 3 ABC, BCA, CAB

4 × 4 Latin square design 4 × 4 ABDC, BCAD, CDBA, DACB
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In addition, a crossover design provides the least-biased estimates for the
difference between treatments assuming that the response of subjects to
treatment is consistent. Take as an example the previously mentioned Study 2:  
if a parallel design were used for the study, observed differences in APC between
two contraceptives could be subject to unknown bias or uncontrolled effects of the
menstrual cycle. By conducting this cycle-controlled randomized crossover trial,
this study has effectively reduced this potential source of bias. 

Main limitations of crossover trials

The main limitation of crossover trials is that they pose greater inconvenience 
to the subjects because multiple treatments are given and the subjects will
therefore be exposed to various transitions between treatment phases. This
longer period of study involvement increases the chance of subject withdrawal
from the study. Censored observations due to subject withdrawal have a higher
impact in a crossover design study, particularly if unequal numbers of subjects
have completed different phases of the trial, meaning that even partially
complete data could produce biased results. 

For crossover studies, it is essential that subjects are in a comparable condition
at the start of each treatment period, otherwise the validity of treatment

Figure 2. Sample sizes required for a crossover design to detect the same treatment effect as that seen 
with a parallel design with a sample size of 100, given different correlation values (r) among the repeated
measurements of the primary endpoint in a crossover trial.
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comparisons is compromised. Crossover design is therefore more appropriate for
chronic diseases that have a stable set of symptoms (such as rheumatoid
arthritis), while acute conditions (such as heart attacks) are less appropriate.
Similarly, the crossover design is not suitable either for primary outcomes that
are permanent or for terminal events (such as pregnancy or death). 

Although crossover trials require fewer patients, this might not always be
appropriate, such as for Phase III studies where a large body of evidence of 
patient exposure is needed to satisfy regulatory requirements regarding drug 
safety, tolerability, and the likelihood of unpredictable side-effects with the 
new treatment.

The most significant problem of crossover trials is the ‘carryover’ effect. The
carryover effect is defined as the persistence (whether physically or in terms of
effect) of treatment applied in one treatment phase of the study to subsequent
treatment phases [4]. In a bioequivalence study this would arise if, for example,
the pre-dose blood sample in the second period contained any measurable
amount of the study drug administered in the previous period. If this is the case,
it is right to conclude that the half-life of the study drug has been underestimated
and, consequently, that the washout period between the two periods was not
sufficiently long for there to be near-complete elimination of the drug from the
subject (pharmacokinetic study) or for the subject to return to baseline values of
outcome parameters (pharmacodynamic study). Psychological carryover is also
possible, where some memory of the therapeutic experience under the previous
treatment affects the patient’s present judgment, ie, his / her perception of the next
treatment. This memory may be either positive or negative [5].

Where it occurs, the consequence of carryover is that the investigators will be
measuring the combined effects of two or more treatments, which in turn 
(if undetected) will lead to a biased evaluation. There are statistical methods that
can help compensate for the lack of return to baseline for individual treatment
effects in the event of a carryover [3,4,6]. However, these make further
assumptions, thereby weakening the study results. The ideal scenario is to ensure
that an adequate washout period is predetermined for each drug or that there 
is continued monitoring throughout the washout period until all subjects have
returned to baseline. 

Another potential problem with crossover trials is the period effect (treatment by
period interaction). Even after an adequate washout interval, the effect of either
treatment can be influenced simply by whether it is administered first or second.
For example, in a crossover trial testing two antihypertensive drugs, both drugs
might be more effective in the second period than in the first (beyond even
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differences due to different patients) due to the effect of being in the trial itself.
If this period effect is large, it can be minimized by allocating equal numbers of
subjects to different sequences and some form of statistical adjustment might then
be required [4–6].

Where are crossover trials useful?

Crossover trials are most commonly used in early drug development, especially 
in Phase I pharmacokinetic, bioequivalence, dose-proportionality, and dose-
escalation studies (for investigating the maximum–tolerated dose), and in Phase
II pharmacodynamic studies. In later phases of drug development, as well as in
other clinical studies, a crossover design is suitable for trials that involve relatively 
stable conditions such as asthma, rheumatism, migraine, mild-to-moderate
hypertension, and angina.

Treatments with a quickly reversible effect (eg, bronchodilators) are more suited
for investigation under crossover design than those with a more persistent effect
(eg, steroids). Furthermore, this design is more applicable to single-dose studies
than to long-term repeat-administration studies. 

Conclusion

The crossover design for trials is a valuable tool in clinical research when applied
in the correct setting. Its main advantage is that it evaluates within-subject
treatment comparisons rather than between-subject comparisons, as in studies
with a parallel design. Consequently, the data variability in crossover trials is
lower, which is reflected in there being more robust data with narrower
confidence intervals, and which reduces the number of study subjects needed to
test hypotheses in clinical settings. The main limitation of the crossover design is
the possibility that a carryover effect could occur, but this can be avoided by
ensuring that there is a sufficient washout interval between the different
treatment periods. 

Crossover trials are widely used in the earlier phases of clinical drug development
(pharmacokinetic, bioequivalence, and pharmacodynamic Phase I studies) and
are clinically useful in studies involving stable chronic conditions and/or drugs
with short-lived effects.
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Factorial Design

Zoe Fox, Dorothea Nitsch, Duolao Wang, 

and Ameet Bakhai 

In a clinical trial, a situation may arise where the nature of the
study calls for the evaluation of more than one treatment for
safety and/or efficacy compared to a control. Possible solutions
include conducting a multiple-arm parallel trial or several
separate trials to evaluate the effect of each treatment
individually. A more economic way to approach this problem 
is to conduct a factorial trial. By using a factorial design, it is
possible to evaluate individual treatment effects for more than
one treatment within the same trial. Although factorial studies
appear extremely useful on the surface, there are a number 
of issues that we need to consider during their study design
and analysis. In this chapter, we discuss and illustrate
advantages and problems of factorial design trials.

■■❚❙❘ Chapter 11
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What is a factorial study?

The simplest factorial design takes a 2 × 2 format, and throughout this chapter we
will refer to 2 × 2 factorial studies unless otherwise specified. In a factorial design
clinical trial with a 2 × 2 format, individuals are randomly assigned to two separate
interventions (eg, interventions A and B) and these interventions are each
compared with their corresponding control(s). 

In a balanced 2 × 2 factorial design, this would mean that from a total of 
N individuals, N / 2 are randomly allocated to receive intervention A and N / 2 are
randomly allocated not to receive intervention A. Correspondingly, N / 2 individuals
are allocated to receive intervention B or to not receive intervention B. Overall:

• N / 4 individuals are allocated to no treatment (control group).
• N / 4 individuals are allocated to intervention A only.
• N / 4 individuals are allocated to intervention B only.
• N / 4 individuals are allocated to the combination of A + B simultaneously.

The benefit in terms of sample size or power of the factorial trial becomes
apparent in the analysis. The usual method is to compare individuals who are
randomized to intervention A (ie, those who receive A and those who receive 
A + B) with those who are not randomized to A (ie, those receiving either
intervention B or no treatment at all). Similarly, individuals who are randomized
to intervention B are compared with those who are not randomized to B. In a
factorial design, it is usual to assume A and B to have independent effects from
each other, ie, that there is no interaction between treatment A and B. 

Example

In a 2 × 2 factorial trial set up to investigate the effects of multivitamins excluding
vitamin A (factor 1) and including vitamin A (factor 2) on birth outcomes of 
HIV-1 infected women, each woman was allocated once to each treatment [1].
Therefore, every mother was randomized twice overall, resulting in the following
four treatment groups:

• Women who received vitamin A only.
• Women who received multivitamins but no vitamin A.
• Women who received both multivitamins and vitamin A.
• Women who received neither.

By using a factorial trial, it is possible to perform two comparisons simultaneously
at the cost of one experiment. In this example, it is possible to compare birth
outcomes for mothers who received vitamin A with those who did not by
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comparing column margins. Similarly, by comparing row totals, it is possible to
evaluate the effect of using multivitamins during pregnancy (see Table 1).

It is also possible to analyze this as a four-way study by investigating each cell 
of the contingency table separately; however, the number of individuals included
in each comparison is reduced, and consequently the study loses power. All 2 × 2
factorial studies can be laid out in the same format as Table 1.

Why should we consider a factorial design?

A factorial design allows two treatments to be evaluated with a trial budget 
for a single comparison, providing both treatments have similar expected 
benefits. This is important because trials are becoming increasingly expensive as
higher standards are expected and larger trials are needed. A trial involving 
1,000 patients currently costs approximately US$4 million, assuming the trial
investigates a new agent, involves evaluations every 6 months, and is partly
conducted in Western countries. 

Such an expense is unlikely to be spared to answer questions concerning relatively
cheap treatments that could never hope to recoup the investment from profits.
For example, no commercial company would finance a trial for aspirin because
there is no profit to be made from aspirin and such expenditure could not be
regained. Therefore, questions about the benefits of cheap, traditional agents are
often appended onto trials of more commercially viable agents. 

A factorial design presents the opportunity for an investigator to answer a question
from both commercial and noncommercial angles. For example, in the ISIS-4
(Fourth International Study of Infarct Survival) trial, investigators assessed the
benefits of captopril (a new blood-pressure–lowering agent), oral mononitrate 

Table 1. Treatment groups after randomization in a 2 × 2 factorial study comparing the effects of vitamin

supplements on pregnancy outcomes in 1,075 Tanzanian women infected with HIV-1 [1].

Multivitamins Vitamin A

Yes No Overall

Yes Vitamin A + multivitamins Multivitamins Treated with multivitamins

(n = 270) (n = 269) (n = 539)

No Vitamin A Placebo No multivitamins

(n = 269) (n = 267) (n = 536)

Overall Treated with vitamin A No vitamin A Total women

(n = 539) (n = 536) (n = 1075)
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(an old anti-angina drug), and intravenous magnesium (an old agent) in 58,043
patients with suspected acute myocardial infarction. While captopril showed a
small but significant reduction in mortality at 5 weeks, neither of the older agents
showed significant benefit. This trial was a 2 × 2 × 2 factorial design. [2].

A further example was the HOPE (Heart Outcomes Prevention Evaluation) study,
which compared ramipril and vitamin E supplementation, both against control;
the latter agent proved ineffective as opposed to the considerable benefit seen
with ramipril, in patients with coronary disease [3]. 

How do we randomize for a factorial design? 

For a factorial design, randomization can be performed using the same methods
as in a two-arm parallel study; however, individuals have to be randomized
multiple times, depending on the number of interventions used. In a 2 × 2 factorial
study, participants are first randomized to either intervention A or its control, 
and then to either intervention B or its control in a second randomization.
Alternatively, individuals can be randomized to one of the following four arms to
avoid the need to randomize twice: A, B, A + B, or placebo.

How do we calculate sample size for a factorial study?

The most common technique used to calculate the sample size for a 2 × 2 factorial
study is to first think of the study as consisting of two individual two-arm trials.
Sample size calculations are carried out for the target effect size of each
intervention separately, assuming the same power and level of statistical
significance. The final number of individuals that need to be recruited is taken
from the comparison that provides the larger sample size – this will ensure enough
power to assess the effect of the remaining comparison. Sample sizes are calculated
in the usual way for parallel-arm randomized controlled trials, so the power to
detect a treatment difference is dependent on the number of individuals in the
groups being compared, not on the overall number of individuals in the study. 

The aforementioned calculations are based on the assumption that there is no
interaction between interventions A and B; however, this will not necessarily be
true. An interaction between interventions means that the effect of treatment A
depends on the presence or absence of treatment B (or vice versa). In this case, 
it is more appropriate to consider the study as a multiple-arm study and ensure
enough power to detect the smallest treatment difference among all possible pair-
wise comparisons. As a result, the trial can be viewed as a four parallel-arm study
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instead of a factorial trial, depending on the comparison of interest. With the
presence of an interaction effect, sample size calculations will depend on the aim
of the study. The possibilities are as follows:

• To compare three active treatments with control and to show that any 
of the treatment combinations is effective compared with the control.

• To compare two active treatments with control and to show that either
intervention is effective on its own compared with the control.

• To make six pair-wise comparisons between all four groups.

The final sample size for the four-arm study is determined using the same method
as above by using the largest sample size as the final trial size.

How do we analyze a factorial study?

It is sometimes assumed that a 2 × 2 factorial study can be analyzed by handling the
four different treatment groups separately. However, such an analysis lacks power
since it excludes a number of individuals and does not take into account the
benefits of the factorial design. On the other hand, if the study subsequently finds
an unexpected interaction effect then this might be a viable approach.

In general, however, the analysis should reflect the initial aim and design of the
trial when assumptions seem tenable. To incorporate the full potential of a simple
2 × 2 factorial study, all individuals should be included in the analyses. 

Example

The aim of the Canadian Trial in Threatened Stroke was to investigate the use of
aspirin and sulfinpyrazone for preventing strokes and deaths [4]. The number of
strokes or deaths in relation to the number of individuals is outlined in Table 2.
These data were initially analyzed by comparing the odds of stroke or death for
individuals on aspirin and individuals not on aspirin (odds ratio 0.63; P = 0.03).
The odds ratio of stroke or death for patients who received sulfinpyrazone
compared with those who did not was not significant. Thus, it was concluded that
aspirin, but not sulfinpyrazone, had a protective effect against stroke and death.

Treatment interaction

The underlying assumption of no treatment interaction in the analysis of
conventional factorial studies needs to be validated; it is possible to test for the
presence of an interaction by including an interaction term between treatments in
a regression model, and comparing the same model without the interaction term
(see Chapter 27). If the interaction term is a significant part of the model,
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an interaction between treatments exists and the study results must be presented
separately for each treatment combination. 

For example, in the GISSI (Gruppo Italiano per lo Studio della Streptochinasi
nell’Infarto Miocardico) trial, the data were initially analyzed using a two-way
method and then by a four-way method, looking at the outcome in individual 
cells compared with the control [5]. The interaction effect was found to be
nonsignificant and the results from the main effects model were therefore
presented as the main study result. Difficulties arise if the interaction test 
results in a low, but nonsignificant, P-value (eg, between 0.05 and 0.10) – this 
can indicate that the study is underpowered to detect an interaction, rather than
establishing the absence of an interaction effect.

Different types of factorial designs

The notation of a factorial study is rather mathematical; the number of
interventions in a factorial study is represented by a product term, which also
contains the number of levels of that intervention. Each number refers to the
different levels of each intervention; for example, treatment ‘yes’ / ‘no’ represents
two levels, whereas treatment ‘none’ / ‘dose 1’ / ‘dose 2’ corresponds to three
levels. In an investigation of two treatments an I × J factorial study is required,
where the first treatment has I levels and the second has J levels. 

An I × J × K factorial study refers to an evaluation of three treatments, with the
third treatment having K levels. A 2 × 2 × 2 notation would be suitable for an
evaluation of three drugs given at a single dose for each drug; that is, the levels
would correspond to the dose and the control. If two dosages of two drugs are 
to be simultaneously evaluated and compared with their baseline value, a 3 × 3
notation would be used where each drug is given at three different levels (control,
dose 1, and dose 2). The number of treatment arms can be deduced by solving the
product of the notation: eg, a 2 × 2 factorial study results in four treatment groups,
a 2 × 3 design in six groups, a 2 × 2 × 2 notation in eight groups, and so on.

Table 2. Number of strokes or deaths / number of individuals in the Canadian Trial in Threatened Stroke [4].

The odds of stroke or death for individuals on aspirin was (20 + 26) / ([144 + 146] – [20 + 26]) = 46 / 244. 

The odds of stroke or death for individuals not on aspirin was (38 + 30) / ([139 + 156] – [38 + 30]) = 68 / 227. 

Sulfinpyrazone Aspirin

Yes No

Yes 20 / 146 38 / 156

No 26 / 144 30 / 139
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Example

A 2 × 3 factorial design was used in the evaluation of several drug regimens as
initial antiretroviral therapy for HIV-1 infection [6]. 

• The first randomization step assigned HIV-1-infected individuals 
to treatment with either didanosine and stavudine (DDI + D4T) 
or zidovudine and lamivudine (ZDV + 3TC).

• The second randomization step evaluated the effect of efavirenz 
alone (EFV), nelfinavir (NFV) alone, or the combination of both 
(EFV + NFV).

Thus, the first randomization step contained two levels, and the second
randomization assigned individuals to three groups: a 2 × 3 factorial study resulting
in six different treatment groups (see Table 3). 

In the previously mentioned ISIS-4 study, a 2 × 2 × 2 factorial design was used 
to evaluate 58,050 individuals with suspected acute myocardial infarction who 
were randomized to receive oral captopril (OC), oral mononitrate (OM), and/or
intravenous magnesium sulfate (IMS) [2]. This design required three randomization
steps, and over 7,000 individuals were randomized to each of the resulting eight
treatment groups (see Table 3): 

• placebo
• OC alone
• OM alone
• IMS alone
• OC + OM
• OC + IMS
• OM + IMS
• OC + OM + IMS

Increasing the interventions

Since a factorial design makes it is possible to analyze more than one intervention
in a single trial, it is tempting to extend the design to a study that investigates 
three or more interventions by performing an expanded factorial design. 
As outlined above, for every additional two-level intervention evaluated, there is
a resulting two-fold increase in the final number of treatment groups. Moreover,
the more interventions evaluated, the more likely it is to uncover an interaction
between interventions. It is therefore advisable to keep the number of
interventions as low as possible, unless there is certainty that all of the
interventions will work independently.
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Table 3. Examples of factorial trial notations. 

3TC = lamivudine; D4T = stavudine; DDI = didanosine; EFV = efavirenz; IMS = intravenous magnesium sulfate; 

NFV = nelfinavir; OC = oral captopril; OM = oral mononitrate; ZDV = zidovudine [2,6,10]. The table below row 3 

is reproduced with permission from the Massachusetts Medical Society [10].

Factorial design Example Resulting intervention groups

2 × k, Comparison of sequential Treatment 1
eg, 2 × 3 three-drug regimens as initial  

therapy for HIV-1infection [6] Treatment 2 DDI + D4T ZDV + 3TC

NFV NFV + DDI + D4T NFV + ZDV + 3TC

EFV EFV + DDI + D4T EFV + ZDV + 3TC

NFV + EFV EFV + NFV + DDI + D4T EFV + NFV +  ZDV + 3TC

2 × 2 × 2 ISIS-4: A randomized factorial OC = Yes: OC = No:
trial assessing early OC, OM,

OM OM
and IMS in 58,050 individuals

IMS Yes No IMS Yes Nowith suspected myocardial 

Yes OC + OM OC + IMS Yes OM + IMS IMS
infarction [2]

+ IMS

No OC + OM OC No OM Placebo

2 × 2 × 2 A factorial trial of six 
× 2 × 3 × 2 interventions for the 

See belowprevention of postoperative 
nausea and vomiting [10]

Consented
n = 5,262

Withdrew
n = 63

Randomly
assigned
n = 5,199

Ondansetron
n = 5,199

Dexamethasone
n = 5,199

Droperidol
n = 5,199

Maintenance
n = 5,199

Carrier gas
n = 4,594

Remifentanil
n = 4,827

n = 5,161

n = 5,161

n = 5,161

n = 5,161

Yes
n = 2,591

Random

Assignment
Outcome data 

incomplete

Outcome data

analyzable

Analysis

of four

factors

Analysis

of six

factors

No
n = 2,608

Yes
n = 2,617

No
n = 2,582

Yes
n = 2,568

No
n = 2,613

Propofol
n = 3,455

Volatile
anesthetic
n = 1,744

NItrogen
n = 2,164

Nitrous oxide
n = 2,150

Oxygen
n = 280

Yes
n = 2,403

No (fentanyl)
n = 2,424

Yes
n = 2,576

No
n = 2,585

Yes
n = 2,596

No
n = 2,565

Yes
n = 2,573

No
n = 2,588

Propofol
n = 3,427

Volatile
anesthetic
n = 1,734

NItrogen
n = 2,146

Nitrous oxide
n = 2,131

Oxygen
n = 280

Yes
n = 2,386

No (fentanyl)
n = 2,403

n = 15

n = 23

n = 21

n = 17

n = 13

n = 25

n = 28

n = 10

n = 18

n = 19

n = 0

n = 424

n = 181

n = 191

n = 17

n = 21

n = 5,161

n = 5,161

n = 4,277

n = 4,789
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Incomplete or partial factorial studies

Studies that evaluate every combination of factors, such as those described above,
are sometimes referred to as fully crossed factorial designs. Incomplete or partial
factorial studies exclude some treatment groups for reasons such as suitability,
feasibility, or ethics. For example, specific combinations of treatments might
result in excess toxicity, and it would therefore be unethical to evaluate them in a
clinical trial. Alternatively, it might not be feasible or necessary to make certain
treatment comparisons [7]. In such cases, it is possible to economize if cells are left
blank intentionally by not allowing recruitment to those combinations, thereby
reducing the total number of groups under comparison and consequently the total
number of individuals.

For example, in a study that evaluated the effect of different percentage levels of
dietary calcium (Ca) and phosphorus (P) on performance, structural soundness,
and bone characteristics of growing pigs at different stages of their development,
there were four different available diets with Ca:P ratios of 0.45:0.32, 0.52:0.40,
0.65:0.50, and 0.80:0.60. For simplicity, the authors used the weights of the animals
to define their stage of development. A total of 664 pigs were initially fed one of
three diets with higher Ca:P phosphate content (0.52:0.40, 0.65:0.50, 0.80:0.60)
during growth (19–56 kg body weight). This was followed by one of three diets
with lower Ca:P levels (0.45:0.32, 0.52:0.40, 0.65:0.50) until the pigs reached their
market weight. This was analyzed as an incomplete 3 × 3 factorial study because
comparisons for the more extreme Ca:P diets at both ends of the range were
omitted [8].

Unbalanced factorial studies

Another design variation is the unbalanced factorial study, where different
numbers of individuals are randomized to each cell. These studies commonly
occur in investigations of combination antihypertensive drugs. Dose combinations
that are expected to be employed as initial therapy may be given a larger sample
size to ensure there is enough power to detect any additional effect of a third
treatment. It is more complicated to analyze an unbalanced factorial study than 
a balanced design, yet various approaches to dealing with problems related to
different sample sizes have been suggested [9]. 

Complicated factorial design

An example of a more complicated factorial design, including several
interventions as well as imbalances between groups, is a study evaluating nausea
and vomiting after elective surgery with general anesthetic [10]. This trial was set
up to examine six interventions as a 26 (2 × 2 × 2 × 2 × 2 × 2) format; however a
third arm, containing 10% of the individuals, was added for the fifth intervention,
which resulted in a 25 × 3 (2 × 2 × 2 × 2 × 3 × 2) format (see Table 3). 
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As prior information was available on the risk of postoperative nausea and
vomiting for one treatment group, in order to quantify this effect appropriately
there were twice as many people randomized to one arm of the intervention
compared with the other. The trial was powered to allow for interactions between
a maximum of three interventions; however, since no interaction effect was
present, the trial provided an estimate of the combined effect of interventions in
addition to individual effects. It was also not feasible for one study site to
randomize individuals to all six interventions; however, even with a reduced
number of individuals, there were enough individuals for the planned
comparisons to be viable. 

What are the advantages of a factorial design?

Cost

The main advantage of a factorial design is its relative economy: it is possible to
evaluate two or more interventions within the same trial at less than the cost of
two separate trials, and possibly with only a marginal additional cost to a single
trial of one intervention. Rather than omitting treatment comparisons in order to
perform a conventional parallel-arm study, or expanding the sample size to a
multiple-arm study, it is possible to evaluate multiple treatments within the same
trial using fewer patients than individual comparisons.

Sample size

Take, for example, the previously mentioned trial of multivitamins and vitamin A
in HIV-1-infected women [1]. If the same study had been performed as a 
three-arm parallel study with the same sample size, N, then a third of the
individuals would have been randomized to receive multivitamins, a third would
have received vitamin A, and the remaining third would have received neither. In
the factorial design used, however, half of the women were randomized to each
treatment irrespective of the other treatment. Therefore, a three-arm parallel trial
has less power to make comparisons; moreover, to achieve the same power as in
a 2 × 2 factorial trial, the three-arm parallel trial would need to randomize 1.5N
women. Hence, substantially fewer individuals are needed in a factorial trial than
in a multiple-arm parallel study with the same power. 

Exploring interaction effects

A second, often-quoted advantage is that factorial designs are useful to crudely
evaluate the combination of interventions. If the aim of the study is to accurately
quantify the interaction effect, many more individuals are required. Quantifying
the effect of a combination of treatments is represented by a multiple-arm trial
that tests the treatment combination in a distinct arm. It follows that, in the above
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example, we would need to increase our original sample size by a factor of four to
investigate whether women on vitamin A and multivitamins have improved birth
outcomes compared with either intervention separately.

What are the limitations of a factorial design?

Interactions

The main disadvantage of factorial trials is that the possibility of interaction
effects can usually only be determined at the end of the study. If such an
interaction effect is present then the usual way of analysis – ignoring the other
treatment assignment by summing up over the table margins – becomes invalid,
since each cell by itself is meaningful. 

Since factorial trials are often designed with the assumption of the absence of 
a treatment interaction, they are not powered to detect interactions, unless they
are substantially over-powered or the initial assumptions were very conservative.
It follows that, in order to test the validity of assumptions of the analysis,
interactions need to be tested for, but often they cannot be completely excluded.
A more detailed description of power associated with a test for interaction in
factorial design can be found elsewhere [11,12]. 

Compliance

Another notable disadvantage is that individuals randomized to only one or two
interventions will find it easier to comply with treatment than individuals
randomized to several different interventions. In the analysis of a factorial design,
individuals are combined across treatment groups and then compared to calculate
the effect of each intervention at a time. Therefore, if adherence is reduced in an
imbalanced way, it could strongly influence the overall findings. A possible practical
solution is to manufacture study medication that contains all the different drug
combinations/placebo within a single pill; however, this might not be economical
or profitable if certain biochemical interactions occur by combining the different
drug formulations in the manufacturing process. 

Conclusion

Most trials consider a single treatment factor where an intervention is compared
with one or more alternatives or placebo. Factorial studies are an efficient and
economical way of comparing multiple interventions because they combine two or
more trials into a single study for little more than the cost of the first study.
Participants are randomly allocated to one or more overlapping intervention
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combinations. It is then possible to test the independent effect of each
intervention on the expected outcome, in addition to the combined effect of both
interventions. Such trials allow investigators a golden opportunity to test
commercially profitable and nonprofitable therapies together. 

In the analysis and reporting of a factorial design trial, it should be stated that the
potential interaction effect between treatments has been tested for and excluded.
The economical advantage and simplicity of these studies usually outweigh the
complications that arise due to unexpected treatment interactions, and these
studies should be used more frequently in clinical practice where appropriate.
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Equivalence Trials

Ameet Bakhai, Rajini Sudhir, and Duolao Wang

Clinical trials are usually conducted to detect the superiority of
one treatment over another. However, compounds often undergo
alterations to either their release mechanism, formulation, 
or manufacturing process, and some are modified chemically,
resulting in related compounds. It can then become necessary
to conduct a trial to compare the altered versus the original
compound or drug to demonstrate that there has been no loss
of effectiveness or increase in side-effects. Such trials are
known as equivalence trials, and their place in the clinical 
trial armamentarium is explained here.

■■❚❙❘ Chapter 12
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Introduction

Clinical trials, particularly Phase II (small patient groups) and Phase III (large
patient groups) studies, usually aim to demonstrate improved efficacy of a new
treatment over placebo/standard treatment. This type of trial is known as a
superiority trial. In other cases, such as when it is unethical to use a placebo
control, it can be necessary to show that a new drug is comparable to an existing
one. Such studies are known as equivalence trials. An example of this is the
CANDLE (Candesartan versus Losartan Efficacy) study, in which two
angiotensin II receptor blockers for reducing hypertension were tested [1].

Reasons for equivalence trials

Improved methods of drug delivery or manufacturing are also sometimes
developed, producing new forms of existing drugs. An equivalence trial can be
used here to check that this change in formulation (eg, sustained release versus
rapid release given more often) does not change the efficacy of the compound.
Equivalence trials are also used when the efficacy of a drug needs to be
demonstrated across varying patient groups, as occurred in the Syst-Eur (Systolic
Hypertension-Europe) substudy. Here, the effect of nitrendipine – a calcium
antagonist that lowers blood pressure – was compared in diabetic versus 
non-diabetic patients [2].

Another application of equivalence trials is assessing whether generic and original
drugs have identical therapeutic effectiveness. It is important that patients
experience the same efficacy from both formulations and ensure that they are
interchangeable without a change in  side-effect profiles, given that generic drugs
will be produced by companies whose manufacturing processes may not be as
complex as those of the parent company.

Glossary

Superiority Demonstration of improved efficacy of a new treatment over placebo/standard treatment
meeting statistical significance

Equivalence Demonstration that the absolute reduction of events achieved by one treatment is similar 
to that achieved by another treatment, with the difference being within a predefined range

Noninferiority Demonstration that the average efficacy of a new treatment, while being less than 
that of the standard treatment, is still within a predefined range and is not clinically
significantly lower 

Clinical equivalence Therapeutic equivalence based on clinical outcomes such as reduced deaths or strokes

Bioequivalence Therapeutic equivalence based on pharmacokinetic parameters such as blood
concentrations or receptor occupancy rates
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What types of equivalence trials are there?

Clinical equivalence

Equivalence trials based on clinical outcomes such as death, stroke, heart attack,
or hospitalization are termed clinical equivalence trials. However, some outcomes,
such as death, are not always practical due to the timescale involved, and
outcomes such as improvement in depression are difficult to measure objectively
and reproducibly.

Bioequivalence

An alternative method is to use a pharmacokinetic (PK) approach, which
compares the PK parameters derived from plasma or blood concentrations of the
compound. Here, the outcomes are more objective and measurable. Trials based
on PK parameters are called bioequivalence trials. The major advantages of a PK
approach are the clear definition of the outcomes (PK parameters) and the lower
variability of these outcomes. 

The basic assumption underlying the PK approach to bioequivalence studies is
that the same number of drug compound molecules occupying the same number
of receptors will have similar clinical effects. The bioequivalence problem is then
reduced to proving that equal numbers of drug compound molecules reach the
receptors. From administration of the drug to the molecules reaching the
receptors, factors of drug distribution, metabolism, and elimination now come
into play. If the chemical nature of the compound in the two different (generic
and original) formulations is identical, the distribution and elimination patterns
are assumed to be the same once the drugs are absorbed. Any change in the
number of drug molecules reaching the receptors is then due to differences in
absorption profiles. For that reason, the US Food and Drug Administration
believes that if the absorption properties of two drugs based on the same
compound are similar, then the two drugs will produce similar effects [3–6].
Bioequivalence trials are discussed further in the following chapter.

Design issues for equivalence trials

How does design affect equivalence trials?

Equivalence trials can be of parallel or crossover design. The two designs differ
mainly in the way they deal with intersubject variability. Between-subject variability 
is a measure of the differences between subjects, whereas within-subject variability
is a measure of the differences within each subject. Subject validity has a large
statistical influence on the equivalence result, so the design chosen is important.
Both types of variability are present in each trial, but in the crossover design –
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where each subject receives both treatments in a random order – the between-
subject variability is minimized because the same subject is given both treatments.
Assuming that the subject remains in similar health at the beginning of each arm
of the study, he/she acts as his/her own reference or control group. This makes the
crossover design more efficient in terms of sample size. If a parallel design were
used, more volunteers would be needed to reach equivalence with the same power. 

In some cases, if the within-subject variability is high (eg, nifedipine and acyclovir
have highly variable effects whereby the same dose and drug given to the same
subject on different occasions will have differing absorption, metabolism, and
clinical effects), the advantage of using a crossover design is minimal.

Noninferiority

There are instances in which the efficacy of a drug needs to be shown to be not
inferior to that of another drug, and equivalence trials designed to detect this are
said to be noninferiority trials. TARGET (Do Tirofiban and ReoPro Give Similar
Efficacy Outcomes Trial) is an example of a noninferiority trial. This study
compared two glycoprotein IIb/IIIa receptor blockers with similar mechanisms 
of action but different chemical structures, platelet-cell adherence profiles, 
and durations of action [7]. Although the trial was designed to show the
noninferiority of tirofiban as compared with abciximab, the trial results
demonstrated that tirofiban had higher ischemic event rates than did abciximab,
failing to show noninferiority.

Interpreting results

Equivalence trials

The definition of an endpoint can also vary depending on the drug/disease in
question. In an equivalence trial in a disease that has a major impact on the
patient, an absolute reduction of events of within 1% of the established/reference
treatment might be acceptable for equivalence. So, if the established/reference
treatment achieved a 10% reduction in events, the new treatment must achieve an
absolute reduction of events of between 9% and 11%. However, for a disease with
a relatively small impact on the patient, such as the common cold, a result within
5% of the reference treatment might be considered equivalent.

Noninferiority trials

When two treatments are compared, a single trial gives one estimate of the true
difference between them. A range can be determined from that single estimate 
to capture the true effect (see Chapter 18). Consider an example trial that shows
that a new treatment is 10% less effective than an established treatment, with 
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a 95% confidence interval (CI) of 5–15% less. The prespecified definition of
noninferiority (see Chapter 14) for this trial might state that the upper limit of the
95% CI must be <20%. Here, the new treatment cannot be called inferior to the
existing treatment as its upper limit is 15%. If the prespecified definition used 
a 12% cutoff then the new treatment would have failed the noninferiority test 
and, in this scenario, the existing treatment would therefore be deemed superior
to the new treatment. The features of equivalence and noninferiority trials are
shown in Table 1.
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Table 1. Features of equivalence and noninferiority trials.

Statistical test

Null hypothesis 

Alternative hypothesis

Example 

Noninferiority

One-sided equivalence test

H
0

: π
N

– π
S
≥ M

Where M is the prespecified maximum
allowable limit of difference in 
outcome rates between the new 
and standard treatments.

The null hypothesis (H
0
) implies that the new

treatment is inferior to the standard one.

H
a

: π
N

– π
S

< M

The new treatment is clinically 
noninferior to the standard treatment
within the predefined allowable 
range (M) of clinical significance.

Consider a trial in which we would
prespecify that if the effectiveness of 
the new treatment is 20% (M) less than
that of the standard treatment, then 
we would consider the new treatment 
to be clinically inferior. 

The result shows that a new treatment 
is 10% less effective than standard
treatment (π

N
– π

S
= 10%), with a one-sided

95% CI for π
N

– π
S

being 5–15%. As the
upper limit of the 95% CI (15%) is < M
(20%), the new treatment is deemed to 
be noninferior to the standard treatment. 
If the prespecified limit (M) is 12%, then
the new treatment fails the noninferiority
test as 15% is higher than the predefined
12% threshold.

Equivalence

Two-sided equivalence test

H
0

: π
N

– π
S
≤ –D or π

N
– π

S
≥ D

Where D is the magnitude of prespecified
difference between outcome rates with 
the new and standard treatments. 

The null hypothesis (H
0
) implies that 

the new and standard treatments 
have differing outcome rates.

H
a

: –D < π
N

– π
S

< D

The new treatment is statistically similar
in outcome rates to the standard
treatment, within a predefined range 
(–D to D).

In an equivalence trial, the standard
treatment has an event rate of 10% (π

S
).

Medical experts in that field agree that 
an absolute reduction of events within 
1% (D) of the standard treatment might 
be acceptable to determine the new
treatment as having an equivalent
efficacy. So we have (–D, D) = (–1%, 1%).

The result shows that the 95% CI for 
π

N
– π

S
= (–0.5%, 0.5%). As this interval

falls within (–D, D), equivalence between
the new treatment and the standard one
can be established. If the 95% CI for 
π

N
– π

S
= (–2%, 2%), then equivalence

between the new treatment and 
standard one cannot be concluded.

Assumptions Let ππ
N

and ππ
S

be the rates of outcomes (eg, deaths or myocardial infarctions) with the

new and standard treatments, respectively, and let a smaller value mean better efficacy
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Conclusion

Equivalence studies have important uses in clinical trials:

• They are used for comparing similar treament compounds.
• They are used for comparing the efficacy of the same treatment 

compound in differing formulations or in different cohorts of patients.

The key things to remember are that:

• They can have either an equivalence or a noninferiority endpoint.
• The outcomes can be clinical or pharmacokinetic.

While most published works concentrate on superiority endpoints, equivalence
studies are performed in large numbers, particularly for regulatory submissions,
so understanding the basic issues related to these approaches is therefore
important. Other variables involved include scientific and ethical issues, and
statistical assessment of superiority, equivalence, and noninferiority.
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Bioequivalence Trials

Duolao Wang, Radivoj Arezina, 

and Ameet Bakhai

Bioequivalence studies are, by and large, conducted to compare
a generic drug preparation with a currently marketed formulation
– typically an innovator drug product. In a bioequivalence study,
blood samples are collected just before the administration of 
a drug and for a period of time after administration. The drug
concentrations are then plotted against time in order to derive
pharmacokinetic parameters and evaluate the bioequivalence
of the drugs under study. In this chapter, we describe some of
the practical issues involved in the design and evaluation of
bioequivalence studies and show how inappropriate design 
of such studies can lead to erroneous conclusions.

■■❚❙❘ Chapter 13
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What is a bioequivalence trial?

A bioequivalence trial is a study of presumed therapeutic equivalence based on
pharmacokinetic (PK) parameters rather than on clinical, or other, endpoints.
There are several in vivo and in vitro methods that can be utilized to evaluate
therapeutic equivalence between two medicinal products. In ascending order of
preference, these include:

• in vitro studies
• comparative clinical studies
• pharmacodynamic (PD) studies
• PK studies

While some of these methods are appropriate only in certain circumstances 
(eg, in vitro dissolution tests can be used to evaluate the therapeutic equivalence
of highly soluble, rapidly dissolving, orally active drugs), others (comparative
clinical and PD studies) are considered less reliable and are generally only
recommended if the PK approach is not possible [1–3]. Quite often, comparisons
based on PD endpoints and, in particular, clinical endpoints, prove to be very
difficult. Such studies are frequently hindered by factors such as a lack of clearly
defined endpoints and huge variability in the measured parameters. Hence, the
PK approach is commonly accepted as the method of choice for evaluating
therapeutic equivalence between a generic and an innovator (reference)
medicinal product. Bioequivalence studies compare PK parameters such as peak
concentration (C

max
) derived from plasma, serum concentrations, and blood

concentrations, as described below. 

Which PK parameters are used in a bioequivalence study?

To illustrate the PK parameters used, data from an anonymous study of the
bioequivalence of generic and reference anagrelide products (used to decrease
platelet count) will be used. An anagrelide ‘plasma concentration over time’
profile of a volunteer is shown in Figure 1. The raw PK data are also given in the
first three columns of Table 1. In a PK study, the following parameters are usually
derived from the PK profile in order to describe the drugs studied:

• AUC: the area under the ‘plasma concentration over time’ curve, which
describes the total number of drug molecules present in the plasma,
thereby providing information on the extent of absorption.
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• C
max

: the peak concentration of the drug in the body.
• T

max
: the time, from dosing, to reach C

max
(C

max
and T

max
together 

are indirect indicators of the rate of absorption).
• λ: the elimination constant, which describes the loss of drug activity 

from the body per time unit (eg, per hour).
• T

1/2
: the elimination half-life. This is the time required for the amount 

(or concentration) of the drug in the body to decrease by half.

These parameters fully describe the shape of the ‘plasma concentration over time’
profile of a study drug. The absorption and elimination phases of a drug are
distinguished by the parameters C

max
and T

max
. When the amount of the drug

absorbed equals the amount eliminated, C
max

is reached. Before C
max

is reached,
absorption is higher than elimination, and after C

max
is reached, the situation 

is reversed. 

Figure 1. An example of a subject’s anagrelide concentration profile.
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AUC = area under the concentration profile; C
max

= the peak concentration of the drug in the body; T
max

= the time 

to reach the peak concentration of the drug from dosing.
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Calculation of PK parameters

C
max

and T
max

The parameters C
max

and T
max

can be directly observed from the PK profile for 
a subject. For the anagrelide data in Table 1 or Figure 1, it is easy to see that 
C

max
= 6.76 ng/mL and T

max
= 0.75 hours.

AUC
0–t

AUC
0–t

stands for the area under the PK concentration profile from time zero to
time t, where t is the last time point at which there is a quantifiable plasma
concentration. AUC

0–t
is usually calculated by the so-called linear trapezoidal rule

using the following formula:

AUC
0–t

= Σ ( )
Columns four to six in Table 1 show the calculation procedure for the anagrelide
data, yielding a value of AUC

0–t
= 12.03 ng.h/mL
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C
i
+C

i–1

2

t

1
(T

i
– T

i–1
)

Table 1. Anagrelide concentration and calculation of AUC.

AUC = area under the curve; C = concentration; LLQ = lower limit of quantitation (0.05 ng/mL); NA = not applicable; T = time.

Samples T
i
(h) C

i
(ng/mL) (C

i
+ C

i–1
) / 2 T

i
+ T

i–1
AUC

i
(ng.h/mL)

1 0.00 <LLQ NA NA NA

2 0.25 0.96 NA 0.25 NA

3 0.50 3.19 2.08 0.25 0.52

4 0.75 6.76 4.97 0.25 1.24

5 1.00 5.24 6.00 0.25 1.50

6 1.25 4.20 4.72 0.25 1.18

7 1.50 3.61 3.91 0.25 0.98

8 2.00 2.96 3.29 0.50 1.64

9 2.50 2.24 2.60 0.50 1.30

10 3.00 1.60 1.87 0.50 0.94

11 4.00 0.95 1.28 1.00 1.23

12 6.00 0.29 0.62 2.00 1.18

13 8.00 0.09 0.16 2.00 0.32

14 10.00 <LLQ NA 2.00 NA

15 12.00 <LLQ NA 2.00 NA

Total 12.03
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λλ and T
1/2

For calculating the remaining PK parameters, a statistical model must be
established. In general, there is no special parametric PK model that fits the
‘plasma concentration over time’ profile for the whole time interval. Nevertheless,
it is empirically accepted that a single exponential model can be fitted to describe
the ‘plasma concentration over time’ profile during the so-called terminal or
elimination phase, and that this declining exponential curve will continue even
beyond the observation interval. In other words, it is assumed that the
disappearance of the drug molecules follows the most simple linear one-
compartmental model (treating the body as a single compartment) during the
elimination phase, but not for the entire interval. Based on the above assumption,
the other PK parameters can be derived.

In most cases, elimination of the drug is a first-order process (ie, the rate of drug
elimination is directly proportional to the concentration of the drug), and a log
transformation makes it possible to draw a straight line through data from the
elimination phase. The slope of this regression line in the elimination phase is
equivalent to the elimination rate constant [1,2]. 

A log transformation of the concentration values in Table 1 is plotted in Figure 2,
from which the elimination phase and rate constant can be determined. It is
crucially important to select the correct starting point for the elimination phase –
ie, where elimination is no longer influenced by absorption and after which the
transformed concentration values tend to be linear. This time point is the first
point of the elimination phase, while the last data point measured is the last point
of the elimination phase. From the anagrelide data in Figure 2, it is obvious that
the elimination phase is from 2 to 8 hours and that the log concentration data are
very close to the fitted regression line:

Log(C
i
) = 2.25 – 0.58 × T

i
with R2 = 0.9998

This gives λ = 0.58 (the loss of drug activity per hour). R2 is a measurement of the
goodness-of-fit of the regression line (a value close to 1 means that the regression
line is a very good fit to the data), 2.25 is the intercept, and –0.58 is the slope of
the fitted regression line.

As elimination is a first-order process, by simply dividing 0.693 (ln 2) by the
estimated λ value, the half-life (T

1/2
) can be calculated [1,2]:

T
1/2

= ln 2 / λ = 0.693 / 0.58 = 1.19
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AUC
0–∞

The next step in the PK parameter calculation is to obtain the AUC
0–∞

– the total
amount of drug present in the blood – by extending the ‘plasma concentration
over time’ profile to infinity. 

Assuming that the exponential elimination process will continue beyond the last
observed concentration at time t, the extended area after t is C

t
/ λ [1–4]. This gives:

AUC
0–∞

= AUC
0–t

+ AUC
t–∞

= AUC
0–t

+ C
t
/ λ

For the anagrelide data, we get:

AUC
0–∞

= 12.03 + 0.09 / 0.58 = 12.18

Figure 2. Determination of the elimination phase and elimination rate constant.
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How to collect PK samples correctly

The success of a bioequivalence trial depends on many factors, such as:

• the standardization of study procedures
• demographic and dietary factors
• analytical work

Among these factors there are two basic study-design issues related to blood
sampling that deserve special attention, since they determine whether the samples
can be used to fully describe the absorption, distribution, and elimination phases
of the drug.

Sampling times

The sampling times at which the blood samples are collected have a decisive
impact on the calculation of the PK parameters for the study drug. Ideally, the
samples should be collected as frequently as possible during the study period so as
to give an accurate PK profile. However, in practice, a relatively small number of
blood samples are usually collected at selected time points due to ethical and
financial considerations. 

The US Food and Drug Administration (FDA) requires that sample collection
should be spaced in such a way that the maximum concentration of the drug in the
blood (C

max
) and the terminal elimination rate constant (λ) can be accurately

estimated [1–3]. It is important that there are enough sampling times clustered
around C

max
. For example, in Figure 1, the blood samples were collected every 

0.25 hours from 0 to 1.5 hours around the T
max

value (0.75 hours), meaning that the
anagrelide PK profile is correct. However, occasionally, not enough blood samples
are collected around C

max
and, consequently, false C

max
, T

max
and AUC values are

obtained. Figure 3 shows an incorrect sampling scheme missing the time point at
0.75 hours. As a consequence of missing just this one time point, the PK parameters
derived from this scheme, such as C

max
, T

max
, and AUC

0–t
, are severely biased, and

therefore erroneous conclusions about bioequivalence could be drawn from them. 

The sampling period

The FDA requires that, to obtain an accurate estimate of λ from linear regression,
sampling should continue for at least three terminal half-lives of the drug, and that
at least three to four samples should be obtained during the terminal log-linear
phase [1,2]. In the case of anagrelide, for example, empirical studies had shown
that the half-life for this drug ranges from 1 to 2 hours, so a sampling period of 
12 hours was planned for the anagrelide trial. The profiles for anagrelide from this
trial show that this sampling period was long enough to obtain an accurate
estimate of λ because, after 8 hours, the anagrelide plasma concentrations were no
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longer quantifiable for most subjects. This is displayed for one subject in Figure 1.
Also, the terminal phase has 6 samples, as shown in Figure 2, which is much
greater than the required minimum of four, yielding a reliable estimate of λ

for this PK profile.

What basic designs are used for bioequivalence trials?

Due to large between-subject variability in PK parameters, it is advantageous to
plan bioequivalence studies with a randomized crossover design. When two drug
formulations are compared, the standard two-way crossover design is often
appropriate. If more than two formulations are involved in a bioequivalence
study, Latin square design, which balances the period and sequence effects,
becomes attractive.

A K × K Latin square design is a way of putting K replicates of each of K
treatments in a K × K array such that in each row and column, all the treatments
are different. A 3 × 3 Latin square design is shown in Table 2 and this pattern can
be extended to any size. In some crossover trials, eg, those involving nifedipine 
(a calcium channel blocker) and acyclovir (an antiviral drug), the PK within-

Figure 3. A concentration profile from an incorrect sampling design.
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AUC = area under the concentration profile; C
max

= the peak concentration of the drug in the body; T
max

= the time 

to reach the peak concentration of the drug from dosing.
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subject variability (the variability of a drug’s effect within a single subject) is very
high. In these cases, a crossover design is no longer advantageous and a parallel
design could be an alternative choice.

How do we evaluate the bioequivalence between two drugs?

Standard statistical methodology based on a null hypothesis is not an appropriate
method to assess bioequivalence [4,5]. The FDA has therefore employed a testing
procedure – termed the ‘two one-sided tests procedure’ [1–4,6] – to determine
whether average values for PK parameters measured after administration of the
test and reference products are equivalent. This procedure involves the calculation
of a 90% confidence interval (CI) [θ

1
, θ

θ
] for the ratio (θ) between the test 

(T)- and reference (R)-product PK-variable averages [4,7]. The FDA guidance
requires that to reach an average bioequivalence, [θ

1
, θ

θ
] must fall entirely within

a range of 0.80–1.25. This is known as the bioequivalence criterion [1–3].

How do we calculate the 90% confidence interval, [θθ
1
, θθ

θθ
]?

The FDA recommends that parametric (normal-theory) methods should be 
used to derive a 90% CI for the quantity μ(T) – μ(R), the mean difference in 
log-transformed PK parameters between the T and R products [1–3]. The anti-logs
of the confidence limits obtained constitute the 90% CI [θ

1
, θ

θ
] for the ratio of the

geometric means between the T and R products. The 90% CI for the difference in
the means of the log-transformed data should be calculated using statistical models
that are appropriate to the trial design.

For example, for replicated crossover designs, the FDA recommends that the
linear mixed-effects model (available in PROC MIXED in SAS or equivalent
software [3]) should be used to obtain a point estimate and a 90% CI for the
adjusted differences between the treatment means. Typically, the mixed model
includes factors accounting for the following sources of variation: sequence,
subjects nested in sequences, period, and treatment. The mixed model also treats
the subject as a random effect so that the between-subject and within-subject
variability can be measured.
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Table 2. A 3 × 3 Latin square design.

Period 1 Period 2 Period 3

Sequence 1 A B C

Sequence 2 B C A

Sequence 3 C A B
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Figure 4. Ratios of pharmacokinetic parameters and their 90% confidence intervals.
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Table 3. Point estimates and 90% confidence intervals for the bioavailability ratio μ(T) / μ(R).

AUC
0–t

= area under the concentration profile,  ie, the amount of drug present in the blood, from 0 to t hours; AUC
0–∞

= area

under the curve from 0 to ∞ hours, ie, the total amount of drug present in the blood; C
max

= the peak concentration of the

drug in the body; T
1/2

= the elimination half-life; T
max

= the time to reach the peak concentration of the drug from dosing; 

λ = the elimination rate constant; μ(R) = mean pharmacokinetic parameter for the reference product; μ(T) = mean

pharmacokinetic parameter for the test product; θ = ratio of the geometric means between the test and reference products.

Parameter Point estimate, θ Lower 90% CI, θ
1

Upper 90% CI, θ
θ

AUC
0–∞

0.9796 0.9151 1.0485

C
max

1.1237 0.9959 1.2681

AUC
0–t

0.9804 0.9155 1.0498

T
1/2

0.9734 0.9165 1.0338

λ 1.0273 0.9673 1.0911

T
max

0.9450 0.6609 1.3511
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In Table 3, the ratios and 90% CIs for six PK parameters are presented as a
hypothetical study of bioequivalence between test (T) and reference (R) products.
These values are also displayed in Figure 4. For example, for AUC

0–∞
the ratio

between treatments T and R has a parametric point estimate of 0.98 and a 90% CI
of 0.95–1.05. As this interval falls well within 0.80–1.25, the bioequivalence
between treatments T and R can be established with respect to AUC

0–∞
. Similarly,

bioequivalence holds true for AUC
0–t

, T
1/2

, and λ. However, as the 90% CIs for 
C

max
and T

max
are not completely covered by the bioequivalence acceptance range

of 0.80–1.25, a conclusion of bioequivalence cannot be reached regarding the rate
of absorption of the study products. Two drugs can only be considered to be
bioequivalent when the rate and extent of absorption are equivalent. With respect
to generic drugs it would be useful to know which statistical ranges the
manufacturers adhere to.

Conclusion

We have highlighted the importance of a correctly designed bioequivalence study
with respect to sampling times and sampling period. We have also demonstrated
how easily biased PK parameters can be generated as a result of an inappropriate
sampling scheme, leading to erroneous conclusions regarding the bioequivalence. 

The typical approach to bioequivalence described in this chapter focuses on the
comparison of population averages for a PK parameter. Developments in
bioequivalence have included the concepts of individual and population
bioequivalence that compare not only population averages, but also variance of
PK parameters. Detailed discussions of these issues can be found in reference [3].
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Noninferiority Trials

Sam Miller, Colin Neate, and Duolao Wang

A noninferiority trial aims to demonstrate that the effect of a
new treatment is as good as, or better than, that of an active
comparator. This is assessed by demonstrating that the new
treatment is not worse than the comparator by more than a
specified margin (the noninferiority margin [δ]). In this chapter,
we discuss in detail, using a recent trial, situations where
noninferiority trials are appropriate, factors to be considered
when choosing an appropriate δ, methods for sample size
determination, and the issues involved in the analysis and
evaluation of noninferiority.

■■❚❙❘ Chapter 14
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What is a noninferiority trial?

Noninferiority trials aim to show that an experimental treatment is not worse than
an active control by more than a predefined noninferiority margin, which is often
denoted by the symbol δ. This margin is the largest reduction in efficacy that can be
judged as clinically acceptable [1]. It is not the case that the lack of a statistically
significant difference in a superiority trial demonstrates noninferiority. From the
outset, the trial must be designed to conclusively show that the new treatment’s
effect is worse by no more than an agreed, prespecified amount.

A noninferiority trial is a specific type of trial known as an equivalence trial 
(see Chapter 12). For an equivalence trial, interest lies in whether the effect of the
two treatments differs by more than the equivalence margin in either direction,
and not solely in whether the new treatment is not worse. Care needs to be taken
with interpreting the terminology used – the term ‘equivalence’ is often used
(incorrectly) when the trial’s aim is specifically noninferiority. It is usual for the
term noninferiority to be used in therapeutic studies and for equivalence to be used
in pharmacokinetic (such as ‘bioequivalence’) studies or in safety studies. 

The following study will illustrate issues relating to the design and analysis of
noninferiority clinical trials.

Example

A randomized, double-blind, multicenter, parallel-group study was undertaken 
to assess the efficacy and safety of oral Augmentin SR 2000/125 mg
(pharmacokinetically enhanced amoxicillin/clavulanate) twice daily versus oral
Augmentin 875/125 mg (amoxicillin/clavulanate) twice daily for 7 days in the
treatment of adults with bacterial community-acquired pneumonia (CAP) [2]. 

The objective of this study was to demonstrate that, in adults, oral Augmentin 
SR 2000/125 mg is at least as effective clinically as oral Augmentin 875/125 mg in 
the treatment of CAP in terms of clinical response (success/failure) at test of cure 
at 4 weeks posttreatment (primary endpoint). Further details of this study are
summarized in Table 1. 

Noninferiority trials are also used in other therapeutic areas. For example, 
an asthma trial might be conducted with bronchodilator drugs in order to
demonstrate the noninferior efficacy of a novel delivery method in comparison
with a conventional inhaler. A typical primary endpoint might be improvement in
peak expiratory flow, with a δ of –12 L/min.
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When are noninferiority trials used?

A number of important factors contribute to choosing a noninferiority design.
Primarily, noninferiority trials are employed in situations where efficacious
treatments already exist. Where this is the case, it will often be unethical to carry
out a randomized, placebo-controlled clinical trial. The new treatment might be
tested to establish that it matches the efficacy of the standard, and at the same
time has secondary advantages (eg, in terms of safety, convenience to the patient,
or cost-effectiveness). Alternatively, it might have potential as a second-line
therapy to the standard (in cases where the standard fails or is not tolerated).

Table 1. A summary of the key features of the bacterial community-acquired pneumonia (CAP) trial example [2].
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Design Randomized, double-blind, multicenter, parallel group

Objective To demonstrate that oral Augmentin SR 2000/125 mg twice daily for 7 days is at least
as effective clinically as oral Augmentin 875/125 mg twice daily for 7 days in the
treatment of CAP in adults

Primary endpoint Clinical response (success/failure) at test of cure at 4 weeks posttreatment

Treatment

New treatment Oral Augmentin SR 2000/125 mg twice daily

Standard treatment Oral Augmentin 875/125 mg twice daily

Noninferiority margin δ = –10%

The prespecified maximum allowable limit of difference in success rates between 
the new and standard treatments

Null hypothesis H
0 
: π

N
– π

S
≤ δ

Where π
N

and π
S

represent the rates of success at test of cure with the new 
and standard treatments, respectively

The null hypothesis (H
0
) implies that the new treatment is inferior to the standard one 

Alternative hypothesis H
a 
: π

N
– π

S
> δ

The new treatment is clinically noninferior to the standard treatment within the
predefined allowable range (δ) of clinical significance

Sample size Approximately 592 patients with CAP were required so as to provide 444 evaluable
patients (222 per treatment arm), with which the study will have 90% power to 
assess that Augmentin SR 2000/125 mg is noninferior to Augmentin 875/125 mg

Analysis method Two-sided 95% confidence interval for the difference in the proportion of successes
between the treatment groups, calculated using the normal approximation to the
binomial distribution

Results Estimated difference in the proportion of successes between the treatment groups 
and 95% confidence interval

Per-protocol: 2.7% (–3.0%, 8.3%) 

Intention-to-treat: 7.0% (0.9%, 13.0%)

Conclusion Augmentin SR 2000/125 mg, twice daily for 7 days, is at least as effective clinically 
as Augmentin 875/125 mg, twice daily for 7 days, in the treatment of CAP in adults
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Noninferiority trials do not conform to the definition of ‘gold standard’ trials 
(ie, randomized, double-blind, placebo-controlled trials) [1]. However, it is
sometimes possible to incorporate a third, placebo, arm into the trial in order to
demonstrate internal validity within the trial. Noninferiority trials also suffer from
the criticism that no naturally conservative analysis exists (in the sense that a true
treatment effect can be diluted by poor investigator conduct and patient
compliance). This is discussed further later in this chapter.

Example (continued)

A number of antibiotics exist for bacterial infections (such as CAP), offering
≥85% clinical efficacy at 4 weeks posttreatment. Demonstrating superior efficacy
on the primary endpoint (ie, clinical response at test of cure) in the general
population would be difficult given such an excellent success rate. However, since
drug resistance is an increasing problem, new antibiotics are required, and so it is
considered appropriate to show noninferiority to an active comparator and to
demonstrate activity against resistant pathogens.

How is the noninferiority margin chosen?

The choice of δ is a critically important aspect of the study design. The value is
typically chosen using clinical judgment, with reference to relevant regulatory
guidance [1,3] and, if appropriate, to guidance for the particular indication. 
A margin should be chosen such that a difference in treatments of such a
magnitude would be considered clinically irrelevant, and anything greater would
be unacceptably large. The value of δ is likely to be smaller than the difference
looked for in a placebo-controlled superiority trial, since this would be a value 
of undisputed clinical importance. 

An alternative way to arrive at a δ is to think of the study as attempting to show
that the new compound is superior to a historical control. A δ of half the difference
previously demonstrated in a superiority trial might, therefore, seem appropriate.
Other factors that might influence the choice of δ are the degree of risk associated
with treatment failure for the indication, relative toxicity, ease of use of the new
treatment compared with the control, and, possibly, feasibility of the study in
terms of enrolling the required number of subjects.

Example (continued)

Success rates of 80–90% are typical for currently approved antibiotics in the
treatment of CAP [4]. As such, a δ of –10% is considered clinically irrelevant, 
so this is the margin recommended in regulatory guidelines [5].

❘❙❚■ Chapter 14 | Noninferiority Trials

134

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 134



Biocreep

There is some concern about noninferiority studies regarding the occurrence of 
a phenomenon known as ‘biocreep’. This is where a slightly inferior new drug
becomes the comparator for the next generation of compounds and so on,
sequentially, until the new drugs of the future only have efficacy close to that of
placebo. Biocreep can occur if a new drug with a lower efficacy rate than the
comparator is approved with a wide δ. The concern can be alleviated when the
chosen active comparator is the current gold standard treatment, and δ is chosen
appropriately for the indication in question and further reduced if a placebo arm 
is incorporated into the study design.

How is the sample size calculated?

Conventionally, the sample size of a clinical trial is powered based on the primary
endpoint, with the aim of obtaining a confidence interval (CI) for the treatment
difference that shows the new treatment’s efficacy to be worse by, at most, δ [1].
As in conventional trials, the following statistics are required to determine the
sample size (see Chapter 9):

• anticipated efficacy of the comparator (ie, proportion for a binary endpoint,
and mean and standard deviation for a continuous endpoint)

• significance level or threshold (α, Type I error)
• power (1 – β, 1 – Type II error)

In addition, the clinically relevant δ needs to be specified. 

As further illustrated by later examples, the resultant sample size is particularly
sensitive to the anticipated efficacy of the comparator, the anticipated effect of
the experimental treatment relative to this, and the choice of δ.

Since δ is often assumed to be a fraction of the treatment difference on which 
a placebo-controlled superiority trial would be powered, noninferiority trials often
require much larger sample sizes. Conversely, they may require smaller sample
sizes than if an active-controlled superiority trial was to be designed, since the
superiority margin for such a trial may be smaller than δ [6].

For noninferiority, the conventional null hypothesis of a superiority trial (ie, that
the true treatment difference is zero) and the alternative (that it is positive) 
is essentially replaced by a null hypothesis that it is inferior by an amount of 
more than the defined δ and an alternative that it is not. Guidance recommends 

Clinical Trials: A Practical Guide  ■❚❙❘

135

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 135



❘❙❚■ Chapter 14 | Noninferiority Trials

136

that, conventionally, a one-sided CI is used to assess noninferiority [1]. In the 
anti-infectives therapeutic area, a 2.5% significance level has regularly been used
to assess the null hypothesis. This corresponds to assessing noninferiority based
on a one-sided 97.5% CI. However, estimation is often best based on a two-sided 
95% CI and sample sizes for this are very similar. Table 2 gives some examples of
sample size calculations [7].

Example (continued)

The total number of patients required for the study is 592 (see Table 2, row A).
This is based on the following assumptions: one-sided H

a
, α = 2.5%, power = 90%,

dropout rate = 25%, π
N

= 88%, π
S

= 88%, δ = –10%, CI calculation method 
= normal approximation, N

S 
= 2 × (N

E 
/ [1 – 0.25]).

The choice of δ has a large impact on the number of subjects required for the trial,
as seen when using a value of –12% rather than –10% (see Table 2, row B).
Therefore, this clinical information is of high importance.

The anticipated efficacy rates also strongly influence the required sample size, 
as can be seen by the increase in sample size when efficacy is assumed to be 85%
instead of 88% (see Table 2, row C). On the probability scale, variance (and hence
width of the CI) is a function of the efficacy rate. Therefore, larger sample sizes
are required for efficacy rates towards the center of the 0–100% probability scale,
where variance is greatest. 

If the clinician truly believes that a small advantage in efficacy will be observed for
the experimental treatment, but the primary goal remains to demonstrate
noninferiority, the calculation should be performed under an assumption of
unequal efficacy. By assuming the efficacy for the experimental treatment is

Table 2. Examples of noninferiority sample sizes.

Assumptions

Example πN πS δ NE NT

A 88% 88% –10% 222 592

B 88% 88% –12% 155 414

C 85% 85% –10% 268 716

D 90% 88% –10% 143 382

π
N

= rate of success with the new treatment; π
S

= rate of success with the standard treatment; δ = noninferiority 

margin; N
E

= number of evaluable subjects per arm; N
T

= total number of subjects enrolled accounting for dropouts.

Assumptions for sample size calculation: H
a

one-sided alternative hypothesis; α = 2.5%; power = 90%; dropout rate = 25%

(to allow for subjects not eligible for efficacy analyses); confidence interval calculation method = normal approximation.
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superior (90% vs 88%), a smaller sample size is required to obtain a CI with a
lower limit at or above –10% (see Table 2, row D). 

A noninferiority trial (by design) includes the possibility of superiority under the
alternative hypothesis. Therefore, when calculating the sample size, it might be
reasonable to assume that the experimental treatment has a small advantage. It is 
then possible to test for both noninferiority and superiority. However, unequal
efficacy should not be assumed simply to reduce sample size, as, if the assumption
is found not to hold, then the study will not be powered to meet the primary
objective of enabling a clinically conclusive assessment of noninferiority.

A further consideration is the methodology that will be used to calculate the CI
for assessing noninferiority. Specifically, there is a need to avoid using an analysis
method that has the property of being more conservative (ie, leads to a wider CI)
than that used in calculating the sample size. For the analysis of probability
differences, approximation methods (such as the normal approximation to the
binomial distribution) can be unreliable for extreme probabilities (where the
expected frequency of events for analysis is small and event probabilities are
approaching asymptotic limits). This can lead to substantial differences in the
sample size estimates obtained when the calculations are made using another
method (eg, the score method [8]). 

How are noninferiority trials analyzed?

Noninferiority and superiority trials differ in terms of the standard method of
analysis. Superiority is usually demonstrated by reference to a P-value (the
probability of seeing the observed treatment difference, or a more extreme
difference, calculated under the null hypothesis of no difference between
treatments), with a CI also used in order to estimate the range of plausible values
for the treatment difference. The smaller, or more significant, the P-value, 
the more confidence in the conclusion of superiority. However, the reverse does
not apply – a large P-value does not necessarily correspond to a clinically
insignificant treatment difference. 

In noninferiority trials, a CI is calculated to estimate the range of values in which
the treatment difference is likely to lie. This CI is used to provide the basis for
drawing the study’s conclusions. If the CI does not include any values for the
treatment difference that are more extreme than the noninferiority limit, then
noninferiority is demonstrated. The confidence level of the CI is usually set at
95%, corresponding to a 2.5% one-sided significance level. The specific method
for calculating the CI will depend on the study design and the endpoints, but the
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principles underlying the drawing of conclusions will be the same. Some typical
noninferiority study CIs are shown in Figure 1.

Example (continued)

The 95% CI for the difference in success rate (Augmentin SR 2000/125 mg –
Augmentin 875/125 mg), calculated using the normal approximation to the
binomial distribution, is (–3.0%, 8.3%) (per-protocol [PP] population) (see Figure 1,
study W). This lies entirely above the specified noninferiority limit of –10%, 
so the study demonstrates that Augmentin SR 2000/125 mg is noninferior to
Augmentin 875/125 mg. 

Had the lower limit of the CI been below the noninferiority limit, then the study
would not have demonstrated noninferiority (see Figure 1, study X). Note that
lack of noninferiority does not necessarily imply inferiority, since the CI does
include some positive values for the treatment difference. The reverse is also 
true (see Figure 1, study Y). These results would lead to a conclusion of
noninferiority (since the CI lies above –10%), though they also show a statistically
significant (clinically insignificant) difference in favor of the standard therapy.

Patient population

Another key issue in analysis is the choice of patient population. The intention-to-
treat (ITT) principle is widely recognized as the most valid analytical approach for
superiority trials that involve long-term follow-up, because it adheres to the

Figure 1. Examples of noninferiority study results.

Studies W and Y show noninferiority; study X shows a lack of noninferiority; study Z shows superiority.

W

X

Y

Z

Ex
am

pl
e

Treatment difference

–10 –5 0 5 10 15
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randomization procedure and is generally conservative [1]. Although some might
argue that ITT analysis is overly conservative, most would agree that a positive
outcome of an ITT analysis in a superiority trial is convincing. 

Unfortunately, no such conservative analysis exists for noninferiority trials.
Including data after study drug discontinuation in the analysis, as ITT does, tends
to give a conservative estimate of the treatment difference, which could make 
a truly inferior treatment appear noninferior. Alternatively, excluding data from
patients with major protocol violations – PP analysis – can bias the results in either
direction (eg, in a situation where dropout is related to efficacy outcome).
Therefore, noninferiority trials are generally analyzed using both ITT and PP
approaches, and conclusions can be considered more robust when both
approaches support the noninferiority of the treatment. 

The CI for the ITT population is (0.9%, 13.0%) (see Figure 1, study Z). 
This supports the conclusion of noninferiority from the PP population, since the
CI lies entirely above –10%.

Example (continued)

In the CAP example, although the study was set up to show noninferiority, it may
have been possible to ‘switch’ to a conclusion of superiority (had the PP analysis
(W) also supported this conclusion). In situations where the CI only includes
positive values of the treatment difference, a statistically significant benefit of the
new treatment over the comparator is demonstrated. The clinical significance of 
a treatment difference of this size would need discussion.

Conclusion

Noninferiority trials provide an alternative study design for indications where
superiority trials would not be appropriate (due to ethical or practical constraints).
They are often used where efficacious treatments already exist, and the
demonstration of noninferiority, as well as secondary benefits, is sufficient for
regulatory approval. However, noninferiority trials suffer from the criticism that
trial results do not show internal validity (since they provide no direct comparison
with placebo), and also that the analysis approach is not naturally conservative [9].

These criticisms can be overcome by [10]: 

• incorporating a placebo arm into the trial
• ensuring that the comparator used is the current standard of care

and previously demonstrated as superior to placebo
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• ensuring that the trial is well monitored
• ensuring that the results of the two analysis populations (PP and ITT)

do not conflict

The choice of δ is critically important, and needs to be prespecified and justified
when designing the trial. Although the choice of δ is dependent on the indication
and available regulatory guidance, sound clinical judgment is always required.
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Cluster Randomized

Trials

Umair Mallick, Ameet Bakhai, Duolao Wang,

and Marcus Flather 

While conventional trials randomize individual subjects 
to different treatments, cluster randomized trials use a 
group of individuals, a hospital, or a community as the unit 
of randomization. Cluster randomized trials are increasingly
used in primary care, health promotion, and public health,
where the methodological superiority of these trials has been
proven when compared with conventional randomized trials. 
Cluster randomized trials potentially require a much larger
number of individuals in the trial if there is a high likelihood
for similar outcomes between individuals, since otherwise the
power of such trials to detect a significant difference is much
lower than conventional randomized trials. In this chapter,
we provide an overview of cluster randomized trials along
with their design, analysis, and ethical implications.

■■❚❙❘ Chapter 15
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Introduction 

In conventional randomized trials, the unit of randomization is usually the
individual subject. In interventions that address organizational changes, however,
it is not always feasible to randomize at the individual level. Trials that randomize
groups of subjects are called cluster randomized trials (CRTs). When individual
randomization proves inappropriate, CRTs can be used to reduce the potential for
contamination within treatment groups (see Table 1). Examples of clusters are
shown in Table 2. 

In recent years, CRTs have become an important tool in clinical research,
particularly since the interventions being evaluated tend to be relatively complex
and diversified. CRTs are particularly used in the evaluation of health care,
screening, and educational interventions, where patients are nested within larger
group settings such as practices, hospitals, or communities.

Design of cluster randomized trials 

The methodological quality of these trials is diverse. Due to the dual nature of
CRTs – focusing on both the cluster and the individual – the design, size, and
analysis of these trials can be complex [1–3]. Therefore, there should be a clear
justification and rationale for using the CRT design. 

Cluster effect

Individuals randomized in a clinical trial are assumed to have an independent
chance of being given a placebo or active treatment, and an independent
progression through the trial. However, if the intervention cannot be blinded 
(eg, a counseling service for a disease) then patients and clinicians are likely to
influence the outcome of this intervention. 

For example, a physician might show frustration at having to give additional
reassurance to a patient who is not being counseled, or make earlier therapy
decisions for patients who are being counseled. Patients being counseled might
report fewer side-effects of other therapies or be more compliant, or be receiving
support from other patients who are also in counseling. This exchange of
information will bias the effect of the intervention, and so it is easier to offer all
of the patients of one hospital counseling, while those in a similar, nearby hospital
receive no counseling. This enables us to see the impact of this intervention
without the trial being contaminated by the cluster effect. 
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It is important to ensure that enough similar hospitals exist to enable balance when
randomized as a cluster; the size of each cluster must also be similar (eg, 20 patients
recruited at each hospital). Randomizing by cluster must now be accounted for in
the design, analysis, and reporting of a trial, since the lack of independence
between patients in a CRT has important statistical implications [4].

Selection bias

In conventional trials, selection bias can be minimized by the randomized
allocation of individual subjects [5]. However, trials in cluster settings are prone
to contamination effects due to correlations among individuals within clusters in
the trial – eg, patients attending an affluent hospital are more likely to be
compliant and to report side-effects. 

This bias can be partially offset by using each cluster as a unit of randomization
(rather than the individual subject), providing enough similar clusters can be
identified. However, CRTs are less efficient than conventional trials since the
number of clusters randomized is smaller than when randomizing at the individual
patient level. This can generate a trade-off between an individual randomized trial
and a CRT [6]. For example, in studies at the primary care level that randomize
physicians of a practice as the unit of clustering – rather than as individual
physicians – the sample size, interpretation, and analysis can all be affected [7–9]. 

Confounding

As in a simple randomized trial, the effect of a treatment in CRTs can be
influenced by the presence of possible confounding factors due to imbalances in
the baseline characteristics of patients (or covariates) between treatment groups
(see Chapter 25). 

Table 1. Why use cluster randomization? 

• To evaluate health care interventions in practices, hospitals, regions, or communities

• Patients in one cluster are more likely to have similar outcomes

• To eliminate contamination of the intervention effects between patients within a cluster

Table 2. Potential units of randomization in cluster randomized trials.

Note: Intervention is usually applied at the cluster level. 

• Groups of individuals chosen by a specific link (eg, geographic location)

• Primary care practices

• Hospitals

• Communities
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It has been argued that the results of CRTs are more subjective to imbalance 
at baseline than simple randomized trials, as it can be impossible to know the
clusters well enough to be able to assure an adequate balance of clusters to each
treatment arm. For example, one cluster might have a heavy bias toward ethnic
minority individuals or older patients. Therefore, proper randomization schemes
should be implemented in order to minimize the possible confounding effect on
the outcome variables. 

Example

The PROMIS (Prospective Registry of Outcomes and Management in Acute
Ischaemic Syndromes)-UK study illustrates the use of CRT design in an ongoing
study [10]. In this trial, the strategy under investigation is a guideline adherence
educational program on enhancing the use of evidence-based treatments (aspirin,
heparin, beta-blockers, clopidogrel, and statins) to improve the outcomes of patients
admitted with acute coronary syndromes. Individual centers are either randomized
to the education program or not. 

The primary outcome is defined as a composite score of all five treatments being
prescribed during the in-hospital phase (1 point for each treatment on a patient,
with a range from 0 to 5). In this CRT, the primary objective is to compare the
composite score for the five evidence-based treatments between the education
group and the control group. 

Since it is likely that many of the same health professionals will look after different
patients within a hospital entering the study, the patients cannot be treated as
having independent outcomes on an individual basis – hence, the choice of 
a CRT design is justified. To control for possible confounding, the investigators
have employed a stratified randomization scheme. This aims to achieve a
balanced distribution of hospitals between two treatment groups with regard to
geographic distribution, teaching hospital status, and whether a hospital has the
facilities to perform invasive therapies for an acute coronary syndrome, since such
hospitals are more likely to also use more drug interventions.

Impact of clustering on sample size

In CRTs, statistical power is greatly reduced in comparison with a similarly sized
individually randomized trial due to randomizing by cluster – therefore, the
sample size calculations need to be inflated, using a cluster inflation factor to
accommodate for the clustering. 
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Another factor to consider is that although the unit of randomization is the cluster
(eg, hospital), the unit of outcome measure is the patient. Therefore, we need to
adjust for the cluster size and number, as well as how closely related the patients’
outcomes are within a cluster. This correlation can be measured by a statistic
called the intra-cluster correlation coefficient (ICC), which can be calculated using
different formulas for different types of outcome variables [1–4]. 

The impact of using a CRT design on sample size can be substantial; it depends
on the size of the clustering effect, as measured by the ICC, and the number of
clusters available, as seen in the following formula:

N
cluster

= (1 + [m – 1] × ICC) × N
simple

where:

• N
simple

and N
cluster

are the sample sizes for simple randomization 
and cluster randomization, respectively 

• m is the number of subjects in each cluster 
• (1 + [m – 1] × ICC) is the design effect
• ICC measures the correlation of the patient’s outcome within a cluster

The design effect indicates the amount by which the sample needs to be multiplied.
Thus, a CRT with a large design effect will require many more subjects than a trial
of the same intervention that randomizes individuals. 

Example

Consider the PROMIS-UK study, a trial of an educational intervention to
implement a clinical guideline. An individual randomized trial would require 
348 patients (N

simple
) to detect a change of 0.30 in the composite score for patients

who are managed with all five therapies (with 80% power and 5% significance).
However, this design would be inappropriate because of the potential 
for contamination. 

For this study, it was estimated that the ICC was about 0.15 and 20 patients were
available per cluster (ie, m = 20). Based on these assumptions, the sample size
adjusting for clustering is 67 clusters or 1,340 patients (N

cluster
), ie, almost four

times that of the individual randomized trial. We can also see from the formula
that the larger the ICC, the more patients are needed.
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Analysis of cluster randomized trials

In analyzing CRTs, the experimental unit is often used as the unit of analysis,
although summary statistics can be made for each cluster. In PROMIS-UK,
although randomization was at the level of the hospital, it was planned that
guideline adherence would be measured at both the patient and hospital levels,
but analysis of subsequent outcome variables be done at the patient level. 

Cluster effect

In the analysis of CRTs, failure to control for the cluster effect (correlation
between individuals within the same cluster) can lead to a biased estimate of
treatment effect, such as a P-value and confidence intervals that overstate the
significance of the result, and hence have an inflated Type I error rate (rejection
of a true null hypothesis) [11,12]. This, in turn, increases the chances of spurious
significant findings and misleading conclusions. 

Donner showed, using data from Murray et al., that the P-value for this specific
study changed from 0.03 if the effect of clustering is ignored to >0.10 after
adjusting for the effect of clustering [8,13]. This example is typical, and shows that
the evidence for a statistically significant treatment effect can be exaggerated 
if the cluster effect is not taken into account in a CRT design.

Statistical methods and models

The classic statistical methods and models, such as the t-test (see Chapter 19), 
are not appropriate for the analysis of CRTs because they are based on a strong
assumption that all individuals in a sample are independent from each other 
(ie, there is no cluster effect in the sample). Fortunately, many advanced statistical
methodologies have been developed to address the cluster effect in CRTs. These
approaches include the robust variance estimate method and the random effect
(multilevel), general estimating equation, and Bayesian hierarchical models [11,12].
The common thread of these techniques is to take into account the cluster effect
by relaxing the independence assumption in their methodological developments.

Of these models, the random effect model has been widely used because it not only
controls for a cluster effect, but also provides an estimate of the cluster effect. 
By applying a random effect model, we can assess to what extent the treatment
effect could be contaminated by the cluster effect. Another advantage of this
model is its ability to take into account heterogeneity due to other unobservable
factors. In addition, appropriate exploratory covariate adjustments can be made,
adjusting for any major imbalances in the groups – including the type of hospital,
the case mix of physicians treating patients (specialists versus nonspecialists), 
and patient characteristics. 
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Sensitivity analysis

Sensitivity analyses assess how estimated treatment effects vary with different
statistical methods, in particular methods that do and do not take the cluster effect
into consideration. If the estimates of treatment effect are sensitive to a cluster
effect in a CRT, it would suggest that the CRT design is important.

A sensitivity study that compared analytical methods in CRTs showed that results
from different approaches that address the cluster effect are less sensitive when
outcomes are continuous than if outcomes are binary [12,14]. 

Bias in published cluster randomized trials 

Although there is increasing recognition of the methodological issues associated
with CRTs, many investigators are still not clear about the impact of this design on
sample size requirements and the results of analysis. 

A retrospective review of CRTs from January 1997 to October 2002 examined the
prevalence of a risk of bias associated with the design and conduct of CRTs [15].
The study showed that, out of 36 trials at the cluster level, 15 trials (42%) provided
evidence for appropriate allocation and 25 (69%) used stratified allocation. Few
trials showed evidence of imbalance at the cluster level. However, some evidence
of susceptibility to risk of bias at the individual level existed in 14 studies (39%).
The authors concluded that some published CRTs might not have taken adequate
precautions against threats to the internal validity of their design [15]. 

Similarly, another review explored the appropriate use of methodological and
analytical techniques used in reports of CRTs of primary prevention trials [16].
Out of 24 articles identified, only four (19%) included sample size calculations or
discussions of power that allowed for clustering, while only 12 (57%) took clustering
into account in the statistical analysis. The authors concluded that design and analysis
issues associated with CRTs generally remain unrecognized (see Table 3) [16].

Table 3. How to improve precision of the treatment effect in cluster randomized trials. 

• Have clear justification for the use of the cluster randomized trial design 

• Carefully select the outcome measures

• Adjust the sample size according to the size and number of clusters

• Take into account the clustering aspect of the design in the analysis

• Carry out sensitivity analyses to assess the robustness of results, using various statistical methods specified 
in the protocol
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The CONSORT (Consolidated Standards of Reporting Trials) statement on trial
conduct and reporting has now been extended to take into account the special
features of CRTs, such as rationale for the cluster design, and implications of the
cluster effect in design and analysis. These changes hope to increase the reporting
quality of these trials [17]. 

Reports of CRTs should include sample size calculations and statistical analyses
that take clustering into account. Information regarding other details (eg, estimates
of design effects, baseline distribution of important characteristics in the
intervention group, number of clusters, and average cluster size for each group)
can guide researchers to design better trials and avoid key errors when conducting
and reporting CRTs (see Table 4) [18]. Indeed, the ideal scenario would be to
publish and submit the design of a CRT for open peer review before the trial gets
under way; this would allow assumptions to be adequately challenged by experts
in the field.

Ethical issues in cluster randomized trials

Several reports, guidelines, and codes provide an extensive overview of the
importance of ethical issues in individual patient randomized trials. However, 
the ethical issues raised by CRTs have also drawn the attention of experts. 

Individuals consenting in conventional randomized trials are likely to consent with
a higher degree of freedom and independence compared to those who participate
in CRTs. In these trials, participants are likely to impinge on each other’s choices
when informed consent for trial entry (that is, for randomization) is obtained. The
decision to participate in the trial or intervention may depend not just on the
individual, but also on the guardian (eg, the hospital chief executive or managing
partner of the primary care trust) in the CRT. For example, a hospital manager
may agree to have a counseling service for all patients with a stroke, and, since this
intervention will be accessible to all patients admitted to that hospital, it might
become protocol rather than a specific consent-requiring therapy – although the
trial design will, of course, have been approved by an ethics committee [19]. 

Table 4. Reporting cluster randomized trials.

• Explain the baseline distribution of important characteristics of the population 

• Include sample size calculations and assumptions of correlation with a cluster

• Provide values of the cluster effect, as calculated for the primary outcome variables

• Explain how the reported statistical analyses account for the cluster effect
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Issues related to the nature and practice of informed consent in CRTs raise 
new questions that need to be properly addressed. Other ethical implications of
these trials, such as principles relating to the quality of the scientific design and
analysis, balance of risk and benefit, liberty to leave a trial, early stopping of a
trial, and the power to exclude people from potential benefits, also need careful
consideration [20]. 

Advantages and limitations of using cluster 

randomized trials in clinical research 

CRTs represent an important type of design that can be considered
complementary to conventional randomized trials. CRTs have certain advantages
over conventional randomized trials. For instance, CRTs help to account for the
potential for contamination between treatments when trial patients are managed
within the same setting. Moreover, the outcomes of patients in a cluster are likely
to be influenced by a number of similar factors. Thus, these patients cannot be
treated as having independent outcomes on an individual basis. CRTs are
especially useful for evaluating quality improvement strategies in health care
interventions and education programs.

On the other hand, when choosing a design between individual randomized trials
and CRTs, one should be ready for some trade-off due to the limited efficiency of
CRTs. There is potentially a considerable loss of power between a conventional
randomized controlled trial and a CRT for the same number of patients.
Therefore, in the statistical analysis and estimation of trial power, the clustering
aspect of the design should not be ignored. Some main points about CRTs
discussed in this chapter are summarized in Table 5.

Table 5. Main advantages and disadvantages of cluster randomized trials.

Advantages Disadvantages

• Optimal design for evaluating quality improvement • Larger sample size is required than for 
strategies in health care intervention and education a simple randomized trial
program studies 

• Account for contamination between patients • The patients and clinicians may recognize 
within a cluster whether they are in the active or placebo arm 

• Easier to administrate the randomization and centers • Clinicians might transfer information 
between clusters
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Conclusion

In clinical research, CRTs have already become an important tool for the effective
evaluation of health care interventions, in particular at the level of primary and
secondary health care institutes across a certain geographical area. In this chapter,
we have illustrated various aspects of design and analysis using appropriate
statistical methods particular to CRTs, and discussed the ethical implications of
this experimental design. 

We have highlighted that a cluster effect can influence or bias trial outcomes,
particularly when the intervention cannot be blinded (such as organizational
interventions offering additional services), and can lead to an over-inflation of 
a treatment effect if this bias is not accounted for. It is also important to 
recognize that publication of CRT results need to follow CONSORT guidelines,
and include (in particular) power calculations and statistical methods dealing with
the cluster effect. Further advanced issues regarding CRTs can be found in
references [12,21,22].
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Multicenter Trials

Ann Truesdale, Ameet Bakhai, and Duolao Wang

A multicenter study has several advantages over a single-center
study, namely: it allows a large number of patients to be recruited
in a shorter time; the results are more generalizable and
contemporary to a broader population at large; and such studies
are critical in trials involving patients with rare presentations 
or diseases. In this chapter, we discuss how multicenter trials
are conducted (reviewing the reasons for using the multicenter
design), and how such trials are organized, and explain the
practical issues involved in planning, conducting, and analyzing
such studies.

■■❚❙❘ Chapter 16
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What is a multicenter trial?

A multicenter trial is a trial that is performed simultaneously at many centers
following the same protocol. The activity at these centers is synchronized from 
a single command center – the coordinating center. A multicenter trial is not
equivalent to a number of separate single-site trials, since the data collected from
the different centers are analyzed as a whole. 

The earliest documented randomized trial was a multicenter study conducted in
1948 by the UK Medical Research Council, evaluating streptomycin for the
treatment of pulmonary tuberculosis. This was discussed in a theme issue of the
BMJ published to mark the 50th anniversary of this trial [1]. Since then, there have
been hundreds more multicenter trials, mainly in the form of large randomized
controlled trials [2]. 

The majority of these trials have commercial funding and are driven by
pharmaceutical sponsors, but in Table 1 we have listed some multicenter trials
undertaken by independent clinical investigators. Most of these studies are unique
as they are pragmatic trials with little commercial interest, designed with primary
outcomes such as death. Such trials are usually published on behalf of all the
investigators, acknowledging the team effort involved. 

Why are multicenter trials conducted?

Multicenter rather than single center trials are carried out for several reasons: 

• When studying rare diseases, there will be a larger pool of patients to recruit
from when using a multicenter trial. Therefore, the patient recruitment
target will be reached more quickly than in a single-center study [3,4].

• For diseases with low event rates, treatments are likely to have a small
absolute benefit and so large numbers (thousands) of patients might 
be needed in order to see a significant benefit.

• Multicenter trials provide a better basis for the subsequent generalization
of the study findings [3,4] since the treatment benefits are not dependent on
one specific center and, therefore, should be reproducible at other centers.

• Any bias that might be related to the practice methods of a single unit –
where methods may be tailored to address local issues – will be reduced.

• Using many investigators to simultaneously evaluate a treatment 
gives more sources of feedback, allows more doctors and healthcare
professionals to gain experience and confidence with the experimental
intervention, and highlights any problems earlier. For example, the
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Table 1. Examples of multicenter trials undertaken by independent clinical investigators.

Trial Number of centers Number of patients Outcome Reference

(countries involved) recruited/sample 

size for ongoing trial 

CESAR 98 online and 180 Death or severe www.cesar-trial.org
recruitment of disability at 6 months
centers ongoing (UK) post-randomization

CRASH 239 online  10,008 Death from any cause [5,6]
and recruitment within 2 weeks of injury
of centers Death or neurological
(UK and overseas) deficit at 6 months

MAGPIE 193 (33 countries) 10,141 Eclampsia [7]

Death of baby

ORACLE 161 (15 countries) 4,826 Neonatal death/ [8]
chronic lung disease  
or major cerebral 
abnormality on
ultrasonography 
before discharge

OSIRIS 229 (21 countries) 6,774 Death or oxygen [9]
dependence at 28 days

Death or oxygen 
dependence at 
expected date of 
delivery

RITA 3 56 (UK) 1,810 Death, myocardial [10]
infarction, or 
refractory angina 
at 4 months

Death or myocardial 
infarction at 1 year

TMC 8 (UK and Republic 606 Death, retransplantation, [11]
of Ireland) or treatment failure for

immunologic reasons

UK collaborative 55 (UK) 185 Death or severe  [12]
trial of neonatal  disability at
extracorporeal 12 months
membrane 
oxygenation

CESAR = Conventional Ventilation or Extra Corporeal Membrane Oxygenation for Severe Adult Respiratory Failure;

CRASH = Corticosteroid Randomisation After Significant Head Injury; MAGPIE = Magnesium Sulphate or Placebo 

for Women with Pre-Eclampsia; ORACLE = Broad Spectrum Antibiotics for Preterm, Prelabour Rupture of Fetal

Membranes; OSIRIS = Open Study of Infants at High Risk of or with Respiratory Insufficiency – the Role of Surfactant;

RITA 3 = Noninvasive Versus Invasive (Angiography) in Patients with Unstable Angina or Non-Q Wave Infarct; 

TMC = Tacrolimus Versus Microemulsified Cyclosporin in Liver Transplantation.
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CRASH (Corticosteroid Randomisation After Significant Head Injury)
trial was a large randomized controlled trial that examined whether an
infusion of corticosteroids can reduce the immediate risk of subsequent
death and neurologic disability when given to adults with head injury and
impaired consciousness [5]. This large, multicenter trial aimed to gain
feedback from many investigating clinicians, which is particularly useful
since this intervention is conducted in a relatively high-risk situation [6].

• In certain cases, a difference in therapeutic approaches is being tested 
and multiple centers that have different facilities or access to treatments
are needed. For example, the PCI-CURE (Percutaneous Coronary
Intervention and Clopidogrel in Unstable Angina to Prevent Recurrent
Ischemic Events) substudy compared patients given the antiplatelet
agent clopidogrel or placebo and a routine coronary angiography and
revascularization strategy as needed with patients in the main study
comparing clopidogrel and placebo in a setting of angiography driven
by clinical need only. Therefore, this trial needed centers both with
and without access to angiography facilities [13].

How is a multicenter trial organized?

Once a specific question to test using a clinical trial structure has been identified,
there is a well-defined procedure for planning and executing the trial [14]. 
A critical issue in multicenter trials is the coordination of the many investigators
involved, all of whom are adhering to a single protocol. In Figure 1 we outline the
main steps and stages involved in a multicenter trial and give a typical timeline for
such studies. Figure 2 shows a typical organizational structure for a multicenter
trial. Such large trials tend to have 5-year timelines, and therefore require an
experienced coordinating team. The skills of such teams are being increasingly
acknowledged and deserve some further explanation [15]. 

Role of the coordinating team in multicenter trials

The coordinating team for an investigator-led multicenter trial is often attached
to a clinical or academic center. Many essential functions are the same regardless
of whether the trial is single-center or multicenter. However, there are certain
aspects that are unique to multicenter trials:

• site selection
• site recruitment
• obtaining national or regional ethics approvals
• constructing a multicenter randomization process for patient 

allocation to treatments
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• site monitoring visits
• organizing local and international meetings for investigators and trial

committees such as the steering, events adjudication, and data and
safety monitoring board committees

Coordinating teams will also need to tag each item of data so that the center
generating that item can be identified, and edit-queries regarding missing or
incorrect data will need to be directed to the appropriate center. Throughout the
trial, the coordinating team will maintain communications with all relevant parties
(eg, from sites to academic institutions, from ethics and safety committees to
sponsors), all of whom are likely to be independent of each other.

Finally, the coordinating team may assist with the dissemination of the results
through further meetings or publications and presentations. Established and
experienced coordinating teams are particularly successful because they are
familiar with the many national ethics bodies and their requirements, and will be
able to recruit centers that have already demonstrated an ability to meet
recruitment targets and send data with minimal editing queries.
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Figure 1. Typical timeline for a multicenter trial with the primary outcome assessed at 6 weeks. 

The activities will vary with each individual trial.

|

0
|

1
|

2
|

-2

Time relative to the start of funding (years)

Up to 2 years  

prior to the start  

Task of funding Year 1 Year 2 Year 3

Protocol development  
and funding secured ������������ ������������ ������������ ������������

Submission for regulatory 
approval (all countries) ������������ ������������ ������������ ������������

Preparation of trial materials ������������ ������������ ������������ ������������

Organization of randomization ������������ ������������ ������������ ������������

Submission for ethics approval ������������ ������������ ������������ ������������

Establishment of trial centers ������������ ������������ ������������ ������������

Investigator meetings ������������ ������������ ������������ ������������

Interim trial results reviewed by 
data and safety monitoring board ������������ ������������ ������������ ������������

Recruitment ������������ ������������ ������������ ������������

Follow-up at 6 weeks ������������ ������������ ������������ ������������

Data collection ������������ ������������ ������������ ������������

Data cleaning ������������ ������������ ������������ ������������

Designing and performing 
data analysis ������������ ������������ ������������ ������������

Dissemination and  
primary publication ������������ ������������ ������������ ������������
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Figure 2. The typical life cycle of a multicenter clinical trial.

Study initiation

Study sponsor and

coordinating center meet

Study feasibility and the 
draft budget for the trial are
discussed, and the outline 
of the trial protocol is drafted

Discussion of study details

The study design is formulated
and the timeframe, objectives,
target population of patients,
recruitment criteria, statistical
analysis plan, and personnel 
for the project are decided on

Trial funding secured

Staff recruitment

The lead PIs, trial steering
committee members, CEC
members, and DSMB
members are recruited

Detailed protocol agreed

Study progression

Data monitoring

Throughout the study, 
the CEC reviews adverse
events, data are entered/
cleaned/verified, and interim
analyses are carried out 
for the DSMB, which can
recommend that either the
trial continues, continues 
with protocol ammendments,
or discontinues for 
safety reasons

Interim monitoring visits to

sites scheduled as needed

Safety or
recruitment

rate
concerns

No safety or
recruitment

rate
concerns

CEC = clinical events committee; DSMB = data and safety monitoring board; FDA = US Food and Drug Administration;

PI = principal investigator.

Trial recruitment suspended

Review lessons learned from

incomplete trial and consider

publication of difficulties

Protocol regulatory approval

Ethics submission to national

and regional regulatory bodies

(eg, FDA)

Protocol approved ± amendments

Trial protocol registered

Coordinating center activities

Sites and local PIs are selected,

and invitations to participate

are sent

Randomization arrangements

made, case report forms finalized

and printed, and databases

created for data entry

Study completion

Interim investigators’ meeting,

often half-way or more to target

recruitment (optional)

Recruitment discontinued 

as interim results show

significant treatment

differences or the target

recruitment is reached

Follow-up phase

Close-out visit to each site

Analysis and conclusion

Data entry/cleaning/

verification/analysis 

Events adjudication/analysis

Database locked

Results reviewed by the

steering committee

Investigators’ meeting

Presentation/publication 

of results

The first results are presented 
to investigators, then public
presentations are given and
results are submitted for
publication. Discussions 
about further trials to 
extend the work may follow

Site eligibility

Investigators meet to discuss

the protocol and each center’s

interest in the study

Optional feasibility studies

carried out for recruitment 

at each center

Local ethics/research 

board submission

Local protocol approval 

± minor local protocol

amendments

Sites and local PIs registered

with coordinating center

Site preparation

Initiation visits and 

site training

Administration completed

Documentation and ethics

approval are checked

Centers authorized to 

enroll patients

Study commencement

Roll-in phase (optional)

After the first few patients from
each site  are enrolled, each site
is visited to verify that all is
going according to protocol

Monitoring/retraining visits 

as needed

Coordinating center activities

Edit-queries are raised,
newsletters are distributed, 
and a frequently asked questions
list with answers is produced 
for staff at all sites to establish
common standards and
communication

Further patient enrollment
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Facilitating collaboration

Multicenter trials clearly involve more personnel than single-center studies,
including a range of investigators and their research teams. The coordinating center
must maintain records for all of these individuals, including their resumés and
signatures. Such information is needed in order to conduct an audit at each stage of
a trial to ensure that every piece of data can be linked to a specific researcher. 

If there are any queries, the coordinating center will communicate with the local
lead investigator who has responsibility for the actions of a center and its
personnel. These local lead investigators will be identified in reports and
acknowledged in publications of the primary results from the study. Coordinating
centers should also confirm that ‘black-listed’ researchers do not participate in
their studies. The US Food and Drug Administration (FDA) and other national
agencies make available lists of clinicians who are suspended from performing
certain types of research.

Meeting recruitment targets and maintaining morale

in multicenter trials 

In large trials, motivating centers to meet or maintain recruitment targets is
essential because, once a few centers slow down, others might follow suit in a
‘domino effect’. This task is made considerably harder by the large number of
individuals involved in the trial. In a clinical setting, performing a randomized trial
requires time and enthusiasm from already over-committed clinicians and nurses.
Therefore, it is essential to market a trial in an imaginative (but ethical) way.
Studies performed in key disease areas where there is a lot to gain by improving
patients’ quality of life tend to be successful. Such studies have greater impact and
encourage the participation of centers and investigators. 

The coordinating team can also boost morale with newsletters and meetings. 
Once the study is underway, an eye-catching trial newsletter can become an
excellent source of study-specific information and can provide a source of answers
to frequently asked questions. Anything that will raise the trial’s profile should 
be considered, such as posters, pens, and promotional stands at appropriate
conferences. If recruitment targets are being met, then it is important to keep the
recruiting centers informed and to thank them. If targets are not being met,
league tables of how many patients each center has recruited can be presented to
act as a stimulus to slower recruiting centers. A trial-specific web site is also
helpful, allowing investigators from different sites to communicate and raise
protocol queries more effectively. 

Clinical Trials: A Practical Guide  ■❚❙❘
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The logistics of organizing a multicenter trial

Ethics approval

Before a patient can be invited to take part in a trial, approval must be granted by
the participating institution’s ethics board. If such a board does not exist,
independent ethics boards can be approached. Often, approval is also needed
from the research and finance departments of each institution. Even before
institutional approval is arranged, a national or regional ethics board might need
to be approached for multicenter trials in some countries. Each country has its
own particular system, and it is the role of the coordinating team to discover and
get to know the requirements and help local collaborators to work their way
through the approval process. 

In the UK, for any trial conducted at five or more sites, an application must first
be submitted for approval to a regional multicenter research ethics committee,
and then to the relevant local research ethics committees covering each
collaborating site. The documentation includes an approval application, the
protocol, the drug/device specifications, and any prior research information and
documentation intended for potential trial participants. 

In the US, clinical trial protocols are submitted simultaneously to institutional
review boards (IRBs) and the FDA, even before the centers are approached. 
The FDA submission is critical if data from the trial are to be later submitted to
the FDA for regulatory approval of a new therapy or device. The FDA has 
a 30-day waiting period in which it can request further details of the protocol or
ask for amendments before the trial can begin at centers. The FDA may advise on
any aspect of the protocol, but particularly on whether sufficient data will be
captured for later regulatory submission, such as toxicology and adverse event
data, and the results of biochemical assays. 

Two broad types of IRB exist: those that are based within academic institutions
and those that are commercially operated. The former are responsible for ethics
approvals for the hospitals within an academic network, while commercial IRBs
make their ethics assessments irrespective of which sites will be recruiting. The
approval that commercial IRBs provide can subsequently be used by any number
of site management organizations (SMOs) without each SMO having to reapply
to their own IRB.

IRBs and ethics boards are particularly interested in the safety and ethical aspects
of trials (eg, consent procedures and incentives used to recruit subjects). They may
request changes to consent documents, or changes in the trial design or protocol.
This process can take several months, requiring further submissions and
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numerous negotiations. The consent form and case report forms might then have
to be translated for use in multinational studies and minority ethnic communities.
Protocols might also need to be translated for use by international researchers.

Selection of centers

The sites that are invited to participate can impact a trial in several ways. The sites
invited should be both competent at undertaking the research and able to meet
recruitment targets for the trial. The competency of centers can be determined both
by external regulatory bodies – such as the FDA in the USA – or by internal audit
committees. The purpose of such audits is to protect the rights, safety, and well-being
of trial subjects, particularly as they might be vulnerable due to illness. Most sites now
adhere to international codes of conduct for research, such as the International
Conference on Harmonisation guidelines for Good Clinical Practice [14].

The number of centers needed for a multicenter trial will depend on the estimated
number of eligible patients at each center. While some coordinating units keep
records of recruitment rates from each site, other coordinating units perform 
a survey prior to authorizing sites to recruit patients, saving considerable time,
frustration, and embarrassment later if recruitment rate projections are over-
ambitious. Such surveys help to keep trials within their budgets.

Randomization of patients and interim analyses

The presence of additional sources of variability not present in single-center trials
(due to variations in protocol adherence or the level of skill of the investigators at
centers) is a specific drawback of multicenter trials. To minimize this variability,
multicenter trials are designed to use a randomization method that equally
distributes patients from each center to each treatment strategy (see Chapter 7).
In this way, missing data from a single center are also distributed equally across
the treatment groups.

Telephone randomization is currently the gold standard (with Internet and
interactive voice-randomization services becoming increasingly popular), and
imbalances in randomization can be dealt with by minimization criteria set out in
the protocol. At an early stage in recruitment, the independent data and safety
monitoring board will view the data by center if the sample size is large. Centers
with large deviations in results will be scrutinized in more detail to ensure that
there are no particular biases or problems. Towards the end of the study, statistical
tests called interaction tests are performed to confirm that treatment outcomes are
similar across all of the centers and that they are not unique to a few centers.
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Financial considerations 

Multicenter trials require more resources than single-center trials. Budgets for
multicenter trials are more complex and usually require that several years of
funding are secured from the start of the trial. Rarely can a multicenter trial be
performed in under 1 year (although for the same protocol design, a multicenter
trial will still be faster than a single-center trial). Also, start-up costs are often
considerable, with compilation of a protocol, securing a center and personnel to
manage the trial, designing and printing case report forms, invitation of
researchers, and multiple ethics submissions required. Events such as investigator
meetings, site authorization, and start-up visits will also need to be budgeted for.
Often, large trials now have a ‘roll-in’ phase for the first few patients from each
center before the trial gets into full swing. At the end of the roll-in phase, each site
is visited to verify that all is going according to the protocol. At this stage, protocol
deviations will trigger protocol amendments. In a multicenter trial, amendments
are extremely troublesome as each ethics review board or IRB has to be notified
of the amendment and all sites have to be sent revised paperwork.

The amount of data that a multicenter trial is to collect has an important bearing
on funding. Large amounts of data are only necessary if they are to be used for
regulatory submissions. Collecting, entering, and cleaning data is expensive, so it
is important only to collect data that will be used in the final analysis. 

For every trial that completes successfully, a number fail due to recruitment
problems. If a trial is falling behind recruitment targets then it is essential to see
this early on so that remedial measures can be taken such as adding centers.

Publication policy

In a multicenter trial there is usually a manuscript writing committee or group.
This group helps to facilitate a standardized approach to all the statistical
analyses, ensures that conclusions from the results are appropriate, recommends
which investigators should be lead authors on publications, and deals with other
authorship issues. The key publications from multicenter studies will usually
acknowledge all participating investigators and may be authored simply 
as ‘the “X” trial investigators’.

Conclusion

In recent years an increasing number of multicenter trials have been performed in
medical research. Such trials bring with them a host of practical problems in terms
of their design, conduct, and analysis because of their size, organizational
complexity, and the large number of investigators involved. In this chapter we
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have examined some key issues, such as the need for, design of, and practicalities
of coordinating multicenter trials. Careful consideration of these issues during the
various stages of trial protocol development and coordination is important to the
success of multicenter trials.
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Basics of

Statistical Analysis

■■❚❙❘ Part III
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Types of Data and

Normal Distribution

Duolao Wang, Ameet Bakhai, and Ashima Gupta

In a clinical trial, substantial amounts of data are recorded 
on each subject at randomization, such as the patient’s
demographic characteristics, disease-related risk factors,
medical history, biochemical markers, and medical therapies,
as well as outcome or endpoint data at various time points.
These data can be quantitative or qualitative. Understanding
the types of data is important as they determine which method
of data analysis to use and how to report the results. In this
chapter, we introduce data types and demonstrate ways 
of summarizing and presenting data in clinical research. 
In addition, we describe the fundamentals of the normal
distribution theory and its applications.

■■❚❙❘ Chapter 17
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What are data and variables?

In a clinical trial, a large amount of information is collected on various
characteristics of subjects at randomization, as well as on efficacy and safety
during follow-up visits. Sometimes, information on the participating centers in a
multicenter study is also collected.

‘Data’ is a collective term for information gathered under various headings or
variables. Variables may be related to demographic characteristics, such as age,
gender, height, weight, and so forth; or be disease specific, such as the presence of
a torn anterior cruciate ligament, coronary disease, or severity of breathlessness;
or related to treatment response, such as reduction in pain, improvement of
disease, return to work or sport, prolongation of life, or improvement in quality 
of life.

For example, in a clinical trial evaluating the effect of cardiac medications in
patients with heart failure there will be two types of variables (data) collected:

• qualitative (or categorical) data; these characterize a certain quality of a
subject (eg, gender, age group, or disease severity group)

• quantitative (or continuous or numerical) data; these represent a specific
measure or count (eg, heart size, blood pressure, or heart rate)

Qualitative data can be classified further into three main groups:

• binary: only two possible responses (eg, gender)
• unordered: many equal responses (eg, race)
• ordered: responses have some form of increasing value (eg, disease severity)

To demonstrate some of the above concepts, let us consider data from an
anonymized randomized clinical trial, conducted to assess physical exercise
intervention on reducing the risk of coronary artery disease (CAD) among people
aged between 60 and 70 years. Table 1 provides baseline data for 10 participants,
and the occurrence of CAD during the 5-year study period. 

In the table, there are three binary variables (gender, treatment, and CAD status
at 5 years), one unordered categorical variable (race), one ordered categorical
variable (chest pain symptoms), and three numerical variables (age, systolic blood
pressure [SBP], and heart rate). Each row in the dataset represents the values of
all the variables for one subject – called an ‘observation’. Each column represents
the range of values for a specific variable. If the variable is quantitative, it can be
numerically summarized by means, medians, modes, and standard deviations. 
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The next concept we shall consider is that there might be relationships between
these variables.

What are dependent and independent variables?

Multivariate regression techniques (see Chapter 24) are tools to explore
relationships among a set of variables, particularly when at least three variables
are involved. In regression analysis, one variable (the dependent variable) is
usually taken to be the response or outcome variable, to be predicted by the other
variables. These other variables are called predictor or explanatory variables or,
sometimes, independent variables because multivariate regression analysis aims to
separate the independent contribution of each of these variables to the outcome
variable. For example, if we are interested in predicting the likelihood of a patient
having CAD, then the CAD variable (‘yes’ or ‘no’) is the response variable,
whereas age, gender, SBP, heart rate, chest pain symptoms, race, and smoking
status may all be predictors or independent variables. If the relationship between
these variables and CAD is strong then one can confidently predict the likelihood
of being CAD-‘yes’ or CAD-‘no’ given the other variable values.

Table 1. Data from a hypothetical, randomized clinical trial, conducted to assess the administration of a new

agent to reduce systolic blood pressure (SBP) among people aged between 60 and 70 years.

Subject Age Gender SBP Heart rate Chest pain symptoms Race Treatment CAD CAD-free

(years) (mm Hg) (bpm) present? time (days)

1 65.9 Male 189 62 No chest pain White Intervention Yes 1,657

2 65.2 Female 207 60 Nonanginal pain White Control Yes 283

3 66.8 Male 152 80 Atypical chest pain Asian Control Yes 188

4 63.7 Male 154 60 Typical chest pain Asian Intervention No 1,657

5 69.8 Male 158 65 No chest pain Other Control Yes 1,257

6 68.1 Male 177 88 Nonanginal pain White Intervention No 228

7 63.5 Female 99 100 Atypical chest pain Other Control No 1,657

8 63.3 Male 153 94 No chest pain White Control Yes 827

9 67.2 Male 123 72 Nonanginal pain Asian Intervention No 1,656

10 68.6 Female 120 72 Atypical chest pain White Intervention No 1,027

bpm = beats per minute; CAD = coronary artery disease.
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What are survival data?

In some medical research, the response variable indicates not only whether an
event occurs, but also the time it takes for an event to occur. This kind of data
requires a combination of a binary (event status) and a continuous variable (time).
In the above example, investigators are interested in the factors that predict 
CAD-free time from the start of this study. In some instances, the event of interest
is death (such as cardiovascular death), but it might be the end of a period 
of remission from a disease, the relief of symptoms, or a further admission 
to hospital. These types of data are generally referred to as ‘time-to-event 
data’ or most frequently ‘survival data’, even when the endpoint or the event 
being studied is something other than death. The terms ‘survival analysis’ or 
‘time-to-event analysis’ encompass the methods and models that are applied to
survival data.

Presenting summaries of variables

In medical reports, data are summarized for presentation by groups (such as the
age-specific group for age distribution) using frequency distributions. These
present the distribution of both qualitative and quantitative data, summarizing
how often each value of a variable is repeated. With quantitative data, we mostly
present a grouped frequency distribution table from which we can appreciate:

• the frequency (number of cases) occurring for each category 
or interval (eg, number of 70- to 74-year-old patients)

• the relative frequency (percentage) of the total sample in each 
category or interval (eg, 70- to 74-year-old patients comprised 
10% of the overall sample)

• the highest and lowest or the range of possible values from our 
patient groups (eg, the oldest patient was aged over 95 years 
and the youngest patient was aged below 25 years)

Although a frequency table provides a detailed summary of the distribution of the
data, the message from the data can be made more immediate by presenting the
distribution in a graph or a chart. The type of graph presented depends on the
type of data. Generally, for categorical data we prefer to use a bar chart or a pie
chart. For continuous data, a histogram or frequency polygon is more appropriate;
this can either represent data from the entire treatment group of patients or from
smaller subgroups of interest. This gives an immediate way of seeing broad
similarities or differences between treatment groups. We can then use statistical
tests to ascertain whether any differences between the groups are significant.

❘❙❚■ Chapter 17 | Types of Data and Normal Distribution
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Box plots are another tool for conveying location and variation information for
continuous data, particularly for detecting and illustrating location and variation
changes between different groups of data.

Figure 1 shows a pie chart and a bar chart comparing the percentage distributions
by gender and New York Heart Association class, respectively, of patients with
heart failure. In Figure 2, a histogram and a frequency polygon are displayed to
describe the SBP and heart rate, respectively.

Clinical Trials: A Practical Guide  ■❚❙❘

171

Figure 1. Pie chart and bar chart for percentage distribution by gender and New York Heart Association

(NYHA) class.

Figure 2. Histogram for systolic blood pressure (SBP) and polygon for heart rate. 
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Categorical variables are most conveniently summarized and presented in terms
of percentages and compared by treatment groups. For quantitative variables 
we can do more than this, as we have other measures with which to summarize 
the data (summary measures). From the observed data, we can calculate the
location (or central tendency) that summarizes where the center of the
distribution lies and we can also summarize the spread, range, or variation of the
distribution, and describe how widely the values are spread above and below the
central value.

There are three measures commonly used to describe the location or ‘center’ 
of a distribution of a quantitative variable:

• mean: the mean can be calculated by summing all the values of
observations and dividing by the total number of observations

• median: the median is the value that divides the distribution into 
equal numbers of observations. The median can be more appropriate 
for distributions that are skewed, such as physical fitness. When the
distribution is symmetrical, the median equals the mean

• mode: the mode is the value that occurs most frequently, ie, the most
typical value. There may be more than one mode if two values are 
equally frequent

The main differences between these measures of location are: 

• the mean is sensitive to outliers, but the median and mode are not
• the mean and median are not affected by small changes in the data, 

while the mode may be

So which one should be presented? Generally, for skewed distributions 
(ie, asymmetrical distributions with extreme values) the median is a better
measure of central location than the mean, though ideally it is worth presenting
both. For statistical analysis and inference, the mean is more commonly used,
although if the data are considerably skewed then statistical techniques based on
medians should be employed.

Percentiles are also sometimes used to describe a variable distribution, giving
proportions of the data that should fall above and below a given value. The pth
percentile is a value such that at most p% of the measurements are less than this
value and at most (100 – p)% are greater. The 50th percentile is the median. 
The most frequently used percentiles are the 25th, 50th, and 75th.
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There are three measures commonly used to summarize the spread of a variable:

• standard deviation: this gives an indication of the average distance 
of all observations from the mean. The standard deviation has an
important role in statistical analysis

• range: the difference between the lowest and highest values 
is known as the full range of values

• range between percentiles: percentiles are the value below which 
a given percentage of the data observations occur. A common range 
used is the interquartile range, which is the range between the 25th 
and 75th percentile. Using this overcomes the problem of extreme 
data values away from the mean or median

Each measure has its own advantages, but the standard deviation is more
commonly used and is more often applied in statistical inference. For survival
data, the median and range are often used to describe the central location 
and spread.

Example

In the clinical report of a pharmaceutical trial, descriptive statistics are often
provided, such as number of observations, mean, standard deviation, median, and 
25th and 75th percentiles by treatment. Table 2 is such a table extracted from a
clinical report, summarizing the SBP change at different visits in a randomized
placebo-controlled clinical study assessing the effect of a study drug on reducing
SBP. The table was designed to provide a quick reference to summary measures
across the treatment groups at each visit. Three types of summary measures 
are tabulated. 

Table 2. Summary of systolic blood pressure (SBP) (mm Hg) by treatment and visit in a drug trial.

Statistics Visit 1 (Baseline) Visit 2 (2 weeks) Visit 3 (4 weeks) Visit 4 (6 weeks)

Drug Placebo Drug Placebo Drug Placebo Drug Placebo

No. of patients 1,013 1,015 1,001 994 978 969 975 958

No. of unknowns 0 0 12 21 35 46 38 57

Mean 129.94 130.32 124.54 129.46 123.19 129.72 121.42 127.90

Standard deviation 18.97 18.52 20.05 18.51 20.48 19.34 20.60 18.71

25th percentile 117 118 110 116 110 118 108 114

Median 130 130 122 130 120 130 120 128

75th percentile 140 140 140 140 138 141 134 140
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The first is the number of observations together with the number of missing
observations. This sample size information is important in determining the
strength of observed evidence and illustrating the dynamics of patient follow-up. 

The second group of summary measures includes the mean and standard
deviation. The former is the average level of SBP for the respective group, which
shows that, after the baseline, patients on the study drug have a consistently lower
SBP than the placebo group. The standard deviation provides a measure of the
spread of SBP for the respective groups. 

The third category of summary measures are three percentiles. The 25th
percentile of SBP for the active treatment group at visit 2 is 110 mm Hg: 25% of
patients had an SBP below 110 mm Hg (in the placebo group, 25% of patients had
an SBP below 116 mm Hg). Table 2 shows that the active treatment group has 
a consistently lower SBP than the placebo group after randomization in terms 
of the 25th, 50th, and 75th percentiles.

The SBP data in Table 2 can also be summarized visually in a box plot 
(Figure 3), in which the vertical axis represents the SBP and the horizontal axis
represents the factors of interest (treatment and visit). The box plot shows the
main body (covering 50% of data values around median with the top of the box
marking the 75th percentile and the bottom the 25th percentile) as well as
individual values outlying the main body. This box plot, comparing SBP by
treatment and visit, shows that the study drug has some effect on SBP after
randomization with respect to both location and variation.
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Figure 3. Box plots of systolic blood pressure (SBP) data from Table 2. 
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The normal distribution 

In medical research, most quantitative variables have a range of values that occur
with the highest frequency at a mean value and less frequently further away from
this mean value, yielding a symmetric, bell-shaped frequency distribution. This is
known as a normal distribution. The assumption of a normal distribution for outcome
variables is a key prerequisite for various statistical analysis methods and models. 

What is a normal distribution?

Quantitative (continuous) variables are those whose values can, in theory, take
any numerical value within a given range. Consider the SBP measurements of
4,000 subjects participating in a health survey. Figure 4 shows the frequency
distribution of these SBPs. In the left-hand histogram, the height of each vertical
bar shows the proportion (or fraction) of subjects whose SBP corresponded to a
value within the 5 mm Hg intervals plotted on the basal axis. If the heights of all
the bars in the histogram are summed then they will total 1, because all the
observed values are represented in the histogram. 

In the right-hand image, we have rescaled the histogram by dividing the height of
each vertical bar by the width of the bar (5 mm Hg), generating a density histogram.
In this histogram, the sum of the areas within all the bars equals 1. Indeed, if a
curve is superimposed joining the midpoints of each of the bars then it forms a bell
shape (solid curve in the left panel of Figure 4) and is very close to an underlying
‘normal distribution’ (solid curve in the right panel of Figure 4). 

Figure 4. Histogram and fitted normal distribution curve for systolic blood pressures (SBPs) from 4,000 subjects.
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The normal distribution is the most important distribution in statistics. It is also
known as the Gaussian distribution after the German mathematician Karl Friedrich
Gauss who first gave the distribution its full description [3].

Properties of the (theoretical) normal distribution

The normal distribution is completely defined by two parameters: the mean (μ) or
center point at which the curve peaks, and the standard deviation (σ) or a measure
of the spread of each tail, expressed statistically as N(μ,σ2). The value of the
normal curve N(μ,σ2) is: 

f(x) =     
1

exp
– [x – μ]2 

σ √2π 2σ 2

σ > 0, –∞ < μ < ∞ , –∞ < x < ∞

Figure 5 gives examples of normal distributions for simulated SBP data. As μ

changes, the normal distribution curve moves along the x-axis; as σ changes, the
spread is closer or further away from μ. Distributions with different standard
deviations have different spreads (left panel), whereas distributions with different
means have different locations (right panel). However, whatever the shape of the
distribution, the area under each curve is equal to 1, often expressed as 100%.

Figure 5. Normal distributions for simulated systolic blood pressure (SBP), with different standard 

deviations (SDs) and means.
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Some key properties of the normal distribution are as follows [2,3]: 

• The curve has a single peak at the center; this peak occurs at the mean (μ).
• The curve is symmetrical about the mean (μ).
• The median is the value above and below which there is an equal 

number of values (or the mean of the two middle values if there 
is no middle number); hence, the median is equal to the mean.

• The total area under the curve is equal to 1.
• The spread of the curve is described by the standard deviation (σ) 

(the square of σ is the variance [σ2]).
• 95% of the observations lie between μ – 1.96σ and μ + 1.96σ.

Examples of random samples from normal distributions 

For a variable measured from the population to be distributed normally, the above
properties should be met. In clinical studies, we are usually interested in a set of
values of a variable (or a sample) from a population with a certain disease. In this
case, the distribution of the sample values might not exactly meet the above
requirements. In fact, samples from a normal distribution will not necessarily seem
to display a normal distribution themselves, especially if the sample size is small. 

Figure 6 displays the histograms of samples of different sizes (n = 20, 40, 100, 
and 400) drawn randomly from three normal distributions: N(0,0.52), N(0,12), 
and N(0,52). The graphs show that few of the small samples display a normal
distribution, but that closeness to a normal distribution increases with sample size.

Why is normal distribution important?

The normal distribution is statistically important for three reasons:

• Firstly, most biological, medical, and psychological variables such as
height, weight, and SBP have approximately normal distributions. 

• Secondly, many statistical tests assume that a quantitative outcome
variable will have a normal distribution. Fortunately, these tests work very
well even if the distribution is only approximately normally distributed. 

• Thirdly, the sampling distribution of a mean is approximately normal 
even when the individual observations are not normally distributed, 
given a sufficiently large sample (such as >200) [3]. This particular 
notion is known as the central limit theorem [4]. 
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The sampling distribution is a distribution of a sample statistic (eg, the mean).
The theorem says that if we draw N samples (each of size n) from a population
and create a new variable, X (sampling distribution of mean), taking N values, the
means for N samples will be X

1
, X

2
, …, X

N
and the distribution of X will be normal

if the sample size n is large enough, regardless of whether the population
distribution is normal. This theorem is fundamental to statistical inference [3,4].

What is a standard normal distribution?

The standard normal distribution is a special normal distribution with a mean of
0 and a standard deviation of 1 or N(0,1). This is a unique distribution whose
distribution table is given in almost all statistical textbooks. 

The standard normal distribution is important because any other normal
distribution, N(μ,σ2), can be converted to a standard normal distribution, N(0,1). 

Figure 6. Histograms for random samples from normal distributions.
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If a variable X follows N(μ,σ2) then it can be mathematically transformed into a
new variable Z with a standard normal distribution N(0,1) by the following formula:

Z =  
X – μ

σ

Z is sometimes called the standard normal deviate [2]. Take the SBP data as 
an example: 

as SBP follows N(130,152), then Z =  
SBP – 130 follows the N(0,1)

15

The transformation does not alter the shape of the distribution. All that happens is: 

• The standardized mean takes the value 0 instead of 130 mm Hg, 
with lower values to the left and higher values to the right.

• The horizontal units are now standard deviations: +1 means one 
standard deviation away from the mean on the right.

Calculating the area under the curve

We can see from the last section that any normal distribution is linked to the
standard normal distribution through a proper transformation. We can use this
relationship to calculate some very useful statistics through the standard normal
distribution table. Table 3 gives areas in the tail of the standard normal
distribution for some selected Z-values: the rows of the table refer to Z to one
decimal place, and the columns to the second decimal place. The table shows the
proportion of the area lying on the right (or upper tail) for each Z-value of the
standard normal distribution. We will now use the SBP data (SBP follows
N[130,152]) to demonstrate four common calculations performed on such data.

Area under the curve in the upper tail

Question 1: What proportion of subjects have an SBP above 160 mm Hg?

The above statistic can be computed in two steps: 

Step 1: Obtain the standardized Z-value: Z = (160 – 130) / 15 = 2.00.

Step 2: Obtain a value of area corresponding to a Z-value of 2.00, by referring
to Table 3, which states that the proportional area to the right of that
Z-value is 0.0228.

Converting the proportion to a percentage, we can answer that about 2.28% of
subjects will have an SBP above 160 mm Hg.
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Table 3. Area in tail of the standard normal distribution.

Z Second decimal place of Z

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

This table gives areas in the tail of the standard normal distribution for some selected Z-values: the rows of

the table refer to Z to one decimal place, and the columns to the second decimal place. The table shows the

proportion of the area lying on the right (or upper tail) for each Z-value of the standard normal distribution.
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Area under the curve in the lower tail

Question 2: What percentage of subjects have an SBP below 110 mm Hg?

Similarly to in Question 1, we can calculate that Z = –1.33. As the standard
normal distribution is symmetrical about zero, the area below –1.33 is equal to the
area above 1.33; this area equals 0.0918. Thus, 9.18% of subjects have an SBP
lower than 110 mm Hg.

The area under the curve within a certain range

Question 3: What proportion of subjects have an SBP between 

110 and 160 mm Hg?

This can be calculated in three steps:

Step 1: The proportion above 160 mm Hg, as calculated in Question 1, is 2.28%.

Step 2: The proportion below 110 mm Hg, as calculated in Question 2, is 9.18%.

Step 3: The proportion of subjects with an SBP between 110 and 160 mm Hg:
= 1 – (proportion above 160 mm Hg + proportion below 110 mm Hg)
= 1 – (2.28% + 9.18%) = 89.54%

The area under the curve in two-sided symmetric tails

Question 4: What proportion of subjects have an SBP above 

130 + 15 mm Hg and below 130 – 15 mm Hg?

The areas described here are known as two-sided percentages, as they cover the
observations symmetrically in both the upper and lower tails. The proportions
given in Table 3 are one-sided areas in the each tail (α). To determine a two-sided
proportion, we simply double the area (denoted as 2α).

Table 3 contd.

Z Second decimal place of Z

3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007

3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005

3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003

3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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The one-sided area above 130 + 15 mm Hg is 15.87% (calculated using the procedure
set out in Question 1). Therefore, the two-sided area above 130 + 15 mm Hg or
below 130 – 15 mm Hg is twice the one-sided area, ie, 2 × 15.87% = 31.74%. 

This result suggests that, for any normal distribution, about 68% of all
observations are bounded within one standard deviation distance either side of
the mean (eg, for SBP data, 130 ± 15 mm Hg). It can be similarly calculated that
about 95% of all observations fall within the mean ± 1.96 × standard deviations
either side of the mean, which is often called the 95% reference range.

How do we assess normality? 

As mentioned, the normality assumption is a prerequisite for many statistical
methods and models, such as t-tests, analyses of variance, and regression analysis.
This assumption should be checked on a given dataset when conducting statistical
analysis, especially with smaller sample sizes. 

There are two ways of doing this:

• graphical inspection of the data to visualize differences between 
data distributions and theoretical normal distributions 

• formal numeric statistical tests

Histograms are sometimes used for visual inspection, but are unreliable for small
sample sizes (as demonstrated in Figure 6). The most common graphical approach
is the inverse normal plot, or the quantile–quantile plot (Q-Q plot), which compares
ordered values of a variable with corresponding quantiles of a specific theoretical
normal distribution. If the data and the theoretical distributions match, the points
on the plot form a linear pattern that passes through the origin and has a unit slope. 

Figure 7 shows the inverse normal plots for the data represented in Figure 6.
These demonstrate that the plots are almost linear and pass through the origin,
suggesting that these samples represent a normal distribution. Figure 8 displays 
a histogram and inverse normal plot for creatine kinase data for 2,668 patients
with chronic heart failure from a clinical trial. The histogram indicates that the
distribution of creatine kinase is not normal – it is positively skewed. The inverse
normal plot shows marked departure from a linear pattern, especially at the lower
and upper range of the data, indicating that a distribution other than the normal
distribution would better fit these data. 
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Figure 7. Visual inspection of normality by inverse normal plot using data from Figure 6.
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Figure 8. Histogram (left) and inverse normal plot (right) for creatine kinase data for 2,668 patients with

chronic heart failure.
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Although visually appealing, these graphical methods do not provide objective
criteria to determine the normality of variables, and interpretations are a matter
of judgment. Numerical methods, such as the Kolmogorov–Smirnov, Shapiro–Wilk,
Anderson–Darling, and Cramer–von Mises tests, are more formal [4,5]. The most
commonly performed test is the Shapiro–Wilk test, which produces an S-W statistic
together with a P-value for testing the null hypothesis that the data are normally
distributed [4,5]. 

Conclusion

In this chapter, we have described the different types of data and simple ways of
summarizing and presenting them. Understanding these concepts and methods is
important for using statistical methods properly. If you would like to understand
more about these concepts, references [1] and [2] provide a useful discussion of
the topics and issues discussed. 

We have also provided an overview of the normal distribution. A normal distribution
is characterized by a symmetrical bell curve defined by two parameters: mean (μ)
and standard deviation (σ2), expressed as N(μ,σ2). The normal distribution is the
fundamental basis of many statistical methods and models. The area under the
normal distribution curve, which represents the proportion of subjects in a range,
can be derived from the standard normal distribution N(0,1) by transforming the
given data distribution to the standard normal distribution. 

The use of histograms for checking normality of a sample is limited when the sample
size is small, and in this instance an inverse normal plot or numerical tests for
normality should be performed. When the given data are not normally distributed
then a more detailed transformation might be needed [1,2].
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Significance Tests and

Confidence Intervals

Duolao Wang, Tim Clayton, and Hong Yan

The primary objective of a clinical trial is to provide a reliable
estimate of the true treatment effect regarding the efficacy
and/or safety of an investigational medicine or therapeutic
procedure. Three major factors can influence the observed
treatment difference away from the true treatment effect.
These are bias, confounding, and chance/random error.
Assuming no bias or confounding exists, statistical analysis
deals with chance; by providing statistical estimation and
testing (inference), it assesses whether random variation 
could reasonably explain the differences seen. While statistical
estimates summarize the distribution of a measured outcome
variable in terms of point estimate (eg, mean or proportion) 
and measure of precision (eg, confidence intervals), statistical
testing involves an assessment of the probability of obtaining 
an observed treatment difference or more extreme difference
in the outcome variable, assuming there is no difference in the
population. In this chapter, we introduce the ideas underlying
the principles of statistical inference and describe two statistical
techniques (hypothesis testing and confidence intervals), with
emphasis on their interpretation and application.

■■❚❙❘ Chapter 18
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Sample, population, and statistical inference

Suppose that it is necessary to measure the average systolic blood pressure (SBP)
level of all males aged ≥16 years in the UK in 2005. For practical and financial
reasons, it is not possible to directly measure the SBP of every adult male in the
UK; instead, we can conduct a survey among a subset (or ‘sample’) of 500 males
within this population. Through statistical inference, we can measure the
properties of the sample (such as the mean and standard deviation) and use these
values to infer the properties of the entire UK adult male population [1,2]. This
process is illustrated in Figure 1.

Population properties are usually determined by population parameters
(numerical characteristics of a population) that are fixed and usually unknown
quantities, such as the mean (μ) and standard deviation (σ) in a normal
distribution N(μ,σ2) (see Chapter 17). [3]. The statistical properties of the sample,
such as the mean (X) and standard deviation (S), can be used to provide 
estimates of the corresponding population parameters. Conventionally, Greek
letters are used to refer to population parameters, while Roman letters refer to 
sample estimates.

Two strategies that are often used to make statistical inference are [2,3]:

• hypothesis testing 
• confidence intervals (CIs)

These two methods are introduced below, illustrated with examples.

Hypothesis testing 

Statistical inference can be made by performing a hypothesis (or significance) test,
which involves a series of statistical calculations [3,4]. In the sample of 500 adult
males, the mean SBP (X) was 130 mm Hg, with a standard deviation (S) of 
10 mm Hg. The empirical estimate for the mean SBP of this population from
previous medical literature is reported as 129 mm Hg (denoted by μ

0
). So, we want

to know whether there is any evidence that the mean SBP value for all adult males
in the UK in 2005 (μ) is different from 129 mm Hg (μ

0
).

Step 1: Null and alternative hypotheses

We start by stating a hypothesis that the population mean SBP for all adult men
in 2005 is 129 mm Hg, or μ = μ

0
(ie, no different to that reported in the medical

literature). This is referred to as the null hypothesis and is usually written as H
0
,
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representing a theory that has been put forward as a basis for argument [2–4].
The hypothesis test is a means to assess the strength of evidence against this null
hypothesis of no difference. 

The alternative hypothesis, usually written as H
a
, is that the mean SBP for the

study population is not equal to the specified value, ie, μ ≠ μ
0
. Note that under the

alternative hypothesis, the 2005 population mean could be higher or lower than
the reference mean. The statistical test for the above hypotheses is usually
referred to as a two-sided test. 

Step 2: Choose an appropriate statistical method and calculate

a test statistic

Once the null hypothesis has been chosen we need to calculate the probability
that, if the null hypothesis is true, the observed data (or data that were more
extreme) could have been obtained [2,3]. To reach this probability, we need to
calculate a test statistic from the sample data (eg, X, S, and n for quantitative
outcomes) using an appropriate statistical method. This test statistic is then
compared to the distribution (eg, the normal distribution) implied by the null
hypothesis to obtain the probability of observing our data or more extreme data.

For the SBP data, given the relatively large sample size, we can use the Z-test to
calculate the value of the test statistic Z. The Z-test is expressed by the following
formula [2,3]:

Z =
X – μ

0

S / √n

Figure 1. Making statistical inferences about a population from a sample by means of a significance test 

and confidence intervals.

Sample Population
Statistical inference:
significance testing
confidence intervals
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This statistic follows a normal standard distribution under the null hypothesis [2,3].
For the SBP data:

• X = 130 mm Hg
• S = 10 mm Hg
• n = 500
• μ

0
= 129 mm Hg

Replacing the values in the formula generates Z = 2.24.

A variety of statistical methods can be used to address different study questions
(eg, comparing treatment difference in means and proportions), and we will
introduce a number of standard statistical methods in later chapters. The 
choice of statistical test will depend on the types of data and hypotheses under 
question [2,3].

Step 3: Specify a significance level and determine its critical values

according to the distribution of the test statistic

Having obtained the appropriate test statistic (in our example, the Z-value), the
next step is to specify a significance level. This is a fixed probability of wrongly
rejecting the null hypothesis, H

0
, if it is in fact true. This probability is chosen by

the investigators, taking into account the consequences of such an error [2,3]. 
That is, the significance level is kept low in order to reduce the chance of
inadvertently making a false claim. The significance level, denoted by α, is usually
chosen to be 0.05 (5%), but can sometimes be set at 0.01.

Figure 2 graphically displays the α of a two-sided Z-test under the null hypothesis,
ie, the area under the normal distribution curve below –Z

α/2
and above Z

α/2
. 

The corresponding Z
α/2

is called the critical value of the Z-test. The critical value
for a hypothesis test is a threshold with which the value of the test statistic calculated
from a sample is compared in order to determine the P-value to be introduced in
the next step.

From Figure 2, we see that a two-sided Z-test has an equal chance of showing that
μ (mean SBP of adult males in our sample) is bigger than μ

0
on one side (above

Z
α/2

) or smaller than μ
0
(below –Z

α/2
) on the other side if the null hypothesis is true.

The area under the curve below –Z
α/2

and above Z
α/2

is known as the null hypothesis
rejection region. If the Z-value falls within this region then the null hypothesis is
rejected at the α level. 

• If α = 0.05, we have Z
0.05/2

= 1.96.
• If α = 0.01, we have Z

0.01/2
= 2.58.

❘❙❚■ Chapter 18 | Significance Tests and Confidence Intervals
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Step 4: Determine a P-value by comparing the value of the test

statistic with the critical value

A P-value is the probability of our result (Z = 2.24 for the SBP data) or a more
extreme result (Z ≤ –2.24 or Z > 2.24) being observed, assuming that the null
hypothesis is true. The exact P-value in the Z-test is the probability of Z ≤ –Z

α/2
or

Z ≥ Z
α/2

, which can always be determined by calculating the area under the curve
in two-sided symmetric tails from a statistical table, specifically of a normal
distribution (see Chapter 17) [3]. For the SBP data, the exact P-value is 0.025.

In a practical application, we often need to determine whether the P-value is
smaller than a specified significance level, α. This is done by comparing the value
of the test statistic with the critical value. It can be seen from Figure 2 that P ≤ α

if, and only if:

• Z ≤ –Z
α/2

; or 
• Z ≥ Z

α/2

For the SBP data, since Z = 2.24 > Z
0.05/2

= 1.96, we can conclude that P < 0.05.
It can be seen from Figure 2 that a smaller P-value indicates that Z is further away
from the center (ie, the null value μ – μ

0
= 0), and consequently provides stronger

evidence to support the alternative hypothesis of a difference.
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Figure 2. Null hypothesis rejection regions (shaded areas) of two-sided Z-test.
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Although the P-value measures the strength of evidence for a difference, which is
largely dependent on the sample size, it does not provide the size and direction of
that difference. Therefore, in a statistical report, P-values should be provided
together with CIs (described in detail later) for the main outcomes [3]. 

Step 5: Make a statistical inference

We are now in a position to interpret the P-value in relation to our data and decide
whether there is sufficient evidence to reject the null hypothesis. Essentially, 
if P ≤ α, the prespecified significance level, then there is evidence against the 
null hypothesis and we accept the alternative hypothesis and say that there is a
statistically significant difference. The smaller the P-value, the lower the chance of
obtaining a difference as big as the one observed if the null hypothesis were true,
and, therefore, the stronger the evidence against the null hypothesis. Otherwise,
if P > α, there is insufficient evidence to reject the null hypothesis, or there is no
statistically significant difference.

For our SBP data, since P < 0.05, we can state that there is some evidence to reject
the null hypothesis of no difference at the 5% significance level, and, therefore,
that the mean SBP for the adult male population is statistically significantly
different from 129 mm Hg. Furthermore, the actual P-value equals 0.025, which
suggests that the probability of falsely rejecting the null hypothesis is 1 in 40 if the
null hypothesis is indeed true. On the other hand, Z

0.005
= 2.58 > Z = 2.24,

calculating P > 0.01. Now we say that there is no evidence to reject the null
hypothesis of no difference if the significance level α is chosen as 0.01. 

The implementation of the above procedures for hypothesis testing with the SBP
data is summarized in Table 1.

Type I (alpha) and Type II (beta) errors

When performing a hypothesis test, two types of error can occur. To explain these
two types of error, we will use the example of a randomized, double-blind,
placebo-controlled clinical trial on a cholesterol-lowering drug ‘A’ in middle-aged
men and women considered to be at high risk for a heart attack. The primary
endpoint is the reduction in the total cholesterol level at 6 months from randomization.

The null hypothesis is that there is no difference in mean cholesterol reduction at
6 months following randomization between patients receiving drug A (μ

1
) and

patients receiving placebo (μ
2
) (H

0 
: μ

1
= μ

2
); the alternative hypothesis is that

there is a difference (H
a 
: μ

1
≠ μ

2
). If the null hypothesis is rejected when it is in fact

true, then a Type I error (or false-positive result) occurs. For example, a Type I
error is made if the trial result suggests that drug A reduced cholesterol levels
when in fact there is no difference between drug A and placebo. The chosen
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probability of committing a Type I error is known as the significance level [1–4].
As in Step 3 above, the level of significance is denoted by α. In practice, 
α represents the consumer’s risk [5], which is often chosen to be 5% (1 in 20).

On the other hand, if the null hypothesis is not rejected when it is actually false,
then a Type II error (or false-negative result) occurs [1–4]. For example, a Type II
error is made if the trial result suggests that there is no difference between drug A
and placebo in lowering the cholesterol level when in fact drug A does reduce the
total cholesterol. The probability of committing a Type II error, denoted by β, 
is sometimes referred to as the manufacturer’s risk [5]. The power of the test is
given by 1 – β, representing the probability of correctly rejecting the null hypothesis
when it is in fact false. It relates to detecting a prespecified difference (see
Chapter 8 for more). Type I and II errors are summarized in Table 2.

Confidence intervals

The second strategy for making statistical inference is through the use of CIs. 
In making inference about a population, we might want to know the likely value
of the unknown population mean (μ). This is estimated from the sample mean
(X), and we call X a point estimate of μ.

Table 1. Practical procedures for hypothesis testing.

SBP = systolic blood pressure.

Step Procedure Illustration with SBP data

1 Set up a null hypothesis and H
0
: μ = μ

0
(= 129), ie, population mean SBP is equal to 129 mm Hg

alternative hypothesis that is H
a
: μ ≠ μ

0
, ie, population mean SBP is different from 129 mm Hg

of particular interest to study

2 Choose a statistical method according            X – μ
0

to data type and distribution, and  
Z =

S / √n
= 2.24

calculate its test statistic from  X = 130 mm Hg
the data collected S = 10 mm Hg 

n = 500

3 Define a significance level α and α = 0.05 and Z
α/2

= 1.96
its corresponding critical value α = 0.01 and Z

α/2
= 2.58

4 Determine the P-value by comparing Since Z = 2.24 > 1.96, P < 0.05
the test statistic and the critical value, Since Z = 2.24 < 2.58, P > 0.01
or calculate the exact P-value Exact P-value = 0.025

5 Make your conclusion according  As 0.01 < P < 0.05, there is evidence to reject the null hypothesis 
to the P-value of no difference at the 5% level of significance, but there is no

evidence to reject the null hypothesis at the 1% level. The P-value
of 0.025 means that the probability of falsely rejecting the null
hypothesis is 1 in 40 if the null hypothesis is true
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In addition, we might want to provide some measure of our uncertainty as to how
close the sample mean is to the true population mean. This is done by calculating
a CI (or interval estimate) – a range of values that has a specified probability of
containing the true population parameter being estimated. For example, a 95% CI
for the mean is usually interpreted as a range of values containing the true
population mean with a probability of 0.95 [2]. The formula for the (1 – α)% CI
around the sample mean (X) corresponding to the Z-test, is given by:

X ± Z
α/2

SE(X)

where SE(X) is the standard error of X, calculated by S / √n. This is a measure of
the uncertainty of a single sample mean (X) as an estimate of the population 
mean [2]. This uncertainty decreases as the sample size increases. The larger the
sample size, the smaller the standard error – therefore the narrower the interval,
the more precise the point estimate.

For our SBP example, the 95% CI for the population mean (μ) can be calculated
with the following formula:

X ± 1.96S / √n = 129.1 to 130.9 mm Hg

This means that the interval between 129.1 and 130.9 mm Hg has a 0.95 probability
of containing the population mean μ. In other words, we are 95% confident that
the true population mean is between 129.1 and 130.9 mm Hg, with the best
estimate being 130 mm Hg. 

CIs can be calculated not just for a mean, but also for any estimated parameter
depending on the data types and statistical methods used (see references [2,3] 
for more). For example, you could estimate the proportion of people who smoke
in a population, or the difference between the mean SBP in subjects taking an
antihypertensive drug and those taking a placebo.

Table 2. Type I and II errors in hypothesis testing.

If  H
0

: μ
1

= μ
2

is:

Statistical inference True False

Reject H
0
: Type I error (α) Correct

significant difference ‘Consumer’s risk’

Retain H
0
: Correct Type II error (β)

nonsignificant difference ‘Manufacturer’s risk’
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Relationship between significant testing and CIs

When comparing, for example, two treatments, the purpose of significance testing
is to assess the evidence for a difference in some outcome between the two groups,
while the CI provides a range of values around the estimated treatment effect
within which the unknown population parameter is expected to be with a given
level of confidence. 

There is a close relationship between the results of significance testing and CIs.
This can be illustrated using the previously described Z-test for the SBP data
analysis. If H

0 
: μ = μ

0
is rejected at the α% significance level, the corresponding

(1 – α)% CI will not include μ
0
. On the other hand, if H

0 
: μ = μ

0
is not rejected at

the α% significance level, then (1 – α)% CI will include μ
0
. 

For the SBP data of adult males, the significance test shows that μ is 
significantly different from μ

0
(= 129 mm Hg) at the 5% level, and the 95% 

CI (= 129.1 to 130.9 mm Hg) did not include 129 mm Hg. On the other hand, 
the difference between μ and μ

0
is not significant at the 1% level; the 99% 

CI (129 ± [2.58 × 10] / √500 = 128.8 to 131.2 mm Hg) for μ does indeed contain
μ

0
. Further information about the proper use of the above two statistical methods

can be found in [6].

Further examples

Let us assume that four randomized, double-blind, placebo-controlled trials are
conducted to establish the efficacy of two weight-loss drugs (A and B) against
placebo, with all subjects, whether on a drug or placebo, receiving similar
instructions as to diet, exercise, behavior modification, and other lifestyle changes.
The primary endpoint is the weight change (kg) at 2 months from baseline. The
difference in the mean weight change between active drug and placebo groups can
be considered as weight reduction for the active drug against placebo. Table 3
presents the results of hypothesis tests and CIs for the four hypothetical trials. The
null hypothesis for each trial is that there is no difference between the active drug
treatment and placebo in mean weight change. 

In trial 1 of drug A, the reduction of drug A over placebo was 6 kg, with only 
40 subjects in each group. The P-value of 0.074 suggests that there is no evidence
against the null hypothesis of no effect of drug A at the 5% significance level. 
The 95% CI shows that the results of the trial are consistent with a difference
ranging from a large reduction of 12.6 kg in favor of drug A to a reduction of 
0.6 kg in favor of placebo.
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The results for trial 2 among 400 patients, again for drug A, suggest that mean
weight was again reduced by 6 kg. This trial was much larger, and the P-value 
(P < 0.001) shows strong evidence against the null hypothesis of no drug effect.
The 95% CI suggests that the effect of drug A is a greater reduction in mean weight
over placebo of between 3.9 and 8.1 kg. Because this trial was large, the 95% CI
was narrow and the treatment effect was therefore measured more precisely.

In trial 3, for drug B, the reduction in weight was 4 kg. Since the P-value was 0.233,
there was no evidence against the null hypothesis that drug B has no statistically
significant benefit effect over placebo. Again, this was a small trial with a wide
95% CI, ranging from a reduction of 10.6 kg to an increase of 2.6 kg for drug B
against placebo.

The fourth trial on drug B was a large trial in which a relatively small, 2-kg reduction
in mean weight was observed in the active treatment group compared with the
placebo group. The P-value (0.008) suggests that there is strong evidence against 
the null hypothesis of no drug effect. However, the 95% CI shows that the
reduction is as little as 0.5 kg and as high as 3.5 kg. Even though this is convincing
statistically, any recommendation for its use should consider the small reduction
achieved alongside other benefits, disadvantages, and costs of this treatment. 
This is an important concept since even a clinically small benefit can be made to
be statistically significant with enough patients. This may not, however, be a cost-
effective change in practice.

Key points from the four trials are summarized in Table 4.

Table 3. Point estimate and 95% CI for the difference in mean weight change from baseline between the active

drug and placebo groups in four hypothetical trials of two weight-reduction drugs. 

Trial Drug No. of Difference in mean Standard Standard  95% CI P-value

patients weight change from deviation of error of for difference

per group baseline (kg) between difference difference

the active drug and

placebo groups

1 A 40 –6 15 3.4 –12.6 0.6 0.074

2 A 400 –6 15 1.1 –8.1 –3.9 <0.001

3 B 40 –4 15 3.4 –10.6 2.6 0.233

4 B 800 –2 15 0.8 –3.5 –0.5 0.008
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Conclusion

Based on the assumption of no bias or confounding in an ideal clinical trial, statistical
inference assesses whether an observed treatment difference is real or due to chance. 

The most common type of inference involves comparing different parameters,
such as means and proportions, by performing a hypothesis test and estimating a
CI. The former indicates the strength of the evidence against the null hypothesis,
while the latter gives us a point estimate of the population difference, together
with the range of values within which we are reasonably confident that the 
true population difference lies. 

Both P-values and CIs for the main outcomes should be reported in an analysis
report. Any statistical inferential results are subject to two types of errors: 
Type I (false positive) and Type II (false negative). Finally, it should be stated 
that a statistically significant difference is not always the same as a clinically
significant difference, and both should be considered when interpreting 
trial results.
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Comparison of Means

Duolao Wang, Felicity Clemens, 

and Tim Clayton

Data on efficacy and safety in clinical trials often take the form
of continuous (or quantitative or numerical) variables. They are
usually summarized descriptively by statistics such as number
of observations, mean or median, and standard deviation or
range by treatment groups, and by graphics such as histograms,
box plots, and dot plots. In this chapter, we describe statistical
methods for evaluating treatment effects for a quantitatively
measured outcome using hypothesis testing and confidence
intervals, and demonstrate their uses and interpretations
through examples.

■■❚❙❘ Chapter 19
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Introduction

In the previous chapter, we described how to use the information from a sample
(eg, sample size, mean, standard deviation) to make inferences about the
corresponding population parameters (eg, mean) by performing a hypothesis test
and calculating a confidence interval (CI). We now extend the idea to situations
where we want to compare the mean outcomes in two treatment groups. 

Example: Chronic airways limitation trial

Consider 24 patients with chronic airways limitation (CAL) participating in 
a randomized placebo-controlled clinical trial to evaluate the efficacy of 
a bronchodilator drug (denoted by treatment A) against placebo (denoted by
treatment B). The primary endpoint of this study is forced expiratory volume 
in 1 second (FEV

1
) at 6 months. The secondary endpoint is the relative change 

in FEV
1

from baseline (pretreatment) to 6 months (posttreatment). Table 1 lists
the raw data of FEV

1
on these patients. 

Table 2 gives some summary statistics of the primary and secondary endpoints
(FEV

1
and percentage change in FEV

1
, respectively) for these patients. These

results suggest a possible difference between active treatment and placebo in
terms of 6-month FEV

1
values. However, the observed difference could be due to

bias (systematic errors), confounding (differences in some predictors of FEV
1

between treatments at baseline), or random (chance) variation (see Chapter 1) [1].
In the absence of bias and confounding, we are able to assess whether chance
variation could reasonably explain the observed difference using significance
testing or the CI methods we illustrated in the previous chapter. Various questions
can be raised regarding the data in Table 2. Three frequently asked questions are
as follows.

Question 1

At the start and end of the study, are the mean FEV
1
values seen in both treatment

groups as expected from the overall population of similar subjects?

Question 2

Is there any evidence of a significant change in mean FEV
1
from baseline in either

treatment group?

Question 3

Is the posttreatment mean FEV
1

or mean FEV1 change within the active
treatment group significantly different from that in the control treatment? 
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Subject Treatment Pretreatment Posttreatment Relative 

FEV
1

(mL) FEV
1

(mL) change (%)

1 B 2188 2461 12.5

2 B 1719 1641 –4.5

3 B 1875 1641 –12.5

4 A 1797 2215 23.3

5 B 1563 1559 –0.3

6 A 2344 3117 33.0

7 A 1719 2051 19.3

8 B 1875 2215 18.1

9 B 2031 1805 –11.2

10 A 1719 1969 14.5

11 A 2016 2264 12.3

12 A 2188 3117 42.5

13 B 1875 2051 9.4

14 B 1797 1969 9.6

15 B 2500 3035 21.4

16 A 2266 2953 30.3

17 B 2422 2625 8.4

18 A 2031 2379 17.1

19 A 2500 3035 21.4

20 B 1875 1723 –8.1

21 B 2188 2297 5.0

22 A 1797 2215 23.3

23 A 1875 2264 20.8

24 A 1875 2215 18.1

Treatment A (active) Treatment B (placebo)

Pretreatment Posttreatment Relative Pretreatment Posttreatment Relative 

FEV
1

(mL) FEV
1

(mL) change (%) FEV
1

(mL) FEV
1

(mL) change (%)

Patients 12 12 12 12 12 12

Mean 2010.6 2482.8 23.0 1992.3 2085.2 4.0

Standard deviation 260.4 437.2 8.5 281.7 456.5 11.3

Median 1945.5 2264.0 21.1 1875.0 2010.0 6.7

Table 1. FEV
1

measured at pre- and posttreatment and relative change from baseline in 24 patients.

Table 2. Summary statistics for pre- and posttreatment FEV
1

and relative change by treatment group. 
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To address these questions, we can perform the statistical significant tests
introduced below [2–4]. As described in Chapter 18, statistical inference concerns
the problem of generalizing findings from a sample to the population from which
it was drawn.

One-sample t-test

To address Question 1, we need to perform a one-sample t-test. This tests the null
hypothesis that the mean of a population (μ) from which the sample is drawn is
equal to a constant (μ

0
). Therefore, the hypotheses are expressed as:

H
0

: μ = μ
0

vs                    (1)

H
a 
: μ ≠ μ

0

The statistic (t) for testing the above hypotheses is given by:

X – μ
0

SE(X)                 (2)

SE(X) = S / √n

where:

• X is the sample mean
• S is the standard deviation
• n is the sample size
• SE(X) is the standard error of the sample mean (X)

Under the null hypothesis, the test statistic in equation (2) is distributed as the 
t-distribution (or Student distribution) with n – 1 degrees of freedom [5]. 

Degrees of freedom

Note that there is a different t-distribution for each sample size, and we have to
specify the degrees of freedom for each distribution (see reference [4] for more
about degrees of freedom). 

The t-density distribution curves are symmetric and bell-shaped, like the standard
normal distribution, and peak at 0. However, the spread is wider than that of the
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t =
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standard normal distribution. Figure 1 displays three t-distributions with degrees
of freedom of 1, 5, and 25, and the standard normal distribution. We can see that
as the number of degrees of freedom increases, the t-distribution approaches 
the standard normal distribution. Therefore, as the degrees of freedom increases,
the t-distribution moves towards the normal distribution and the Z-test introduced
in Chapter 18 can be used for hypothesis testing, rather than the t-test. 

Critical values

The principles for a significance test are as described in Chapter 18. For the 
one-sample t-test, if:

|t| ≥ t
α/2,n–1

where t
α/2,n–1

is a critical value of a t-distribution with n – 1 degrees of freedom, we
would have evidence against the null hypothesis that μ = μ

0
, ie, the population

mean (μ) is statistically significantly different from the constant μ
0

at the α level
of significance.
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Figure 1. Three t-distributions and their relationship with a standard normal distribution. 
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Table 3 displays some selected critical values for t-distributions with different
degrees of freedom. This table contains the significance levels for one- and 
two-tailed (sided) t-tests (a tail is either end of a t-distribution curve) (see
references [3] and [4] for more about one- and two-sided tests). For the alternative
hypothesis currently under examination, we use a two-sided test because the true
population mean could be larger or smaller than the hypothesized mean FEV

1
.

The corresponding 100(1 – α)% CI for a population mean (μ) can be calculated
from the following equation:

X ± t
α/2,n–1 

× SE(X)               (3)

Example

The t-test can be illustrated using the CAL trial data. Suppose, from the literature,
the mean FEV

1
for patients with CAL is 2000 mL (= μ

0
). Hence, it might be of

clinical interest to know whether the mean FEV
1

for the CAL patient population
treated with test drug A is different from 2000 mL. 

From Table 2, we have X = 2482.8, S = 437.2, and n = 12 for FEV
1

at
posttreatment. Placing those values in equation (2), we have:

SE(X) = 437.2 / √12 = 126.2 

t =
2482 – 2000  

= 3.83126.2

From Table 3, we can see that the critical t-values corresponding to 11 degrees of
freedom are t

0.01/2,11
= 3.11 and t

0.001/2,11
= 4.44 for α = 0.01 and 0.001, respectively.

Since t
0.01/2,11

< 3.83 < t
0.001/2,11

, then 0.001 < P-value < 0.01. Therefore, we conclude
that the data provide evidence that the population mean for FEV

1
after active

treatment A is (statistically) significantly different from 2000 mL at the 5%
significance level. The corresponding 95% CI, as calculated from equation (3), 
is (2205.1, 2760.6), suggesting that we estimate that the true posttreatment FEV

1

mean for patients in group A is 95% likely to fall between 2205.1 and 2760.6 mL.

Similarly, we can perform t-tests (H
0 
: μ = 2000) for FEV

1
and estimate the 95%

CIs for the population mean of FEV
1

for patients in group A at baseline, and for
patients in group B at baseline and posttreatment. These corresponding results
are presented in Table 4. The results show that there is insufficient evidence to
suggest that population means for the three outcomes are significantly different
from 2000 mL.
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Table 3. Critical t-values by degrees of freedom.

Degrees of freedom Level of significance

One-tailed test

0.025 0.005 0.0005

Two-tailed test

0.05 0.01 0.001

1 12.71 63.66 636.58

2 4.30 9.92 31.60

3 3.18 5.84 12.92

4 2.78 4.60 8.61

5 2.57 4.03 6.87

6 2.45 3.71 5.96

7 2.36 3.50 5.41

8 2.31 3.36 5.04

9 2.26 3.25 4.78

10 2.23 3.17 4.59

11 2.20 3.11 4.44

12 2.18 3.05 4.32

13 2.16 3.01 4.22

14 2.14 2.98 4.14

15 2.13 2.95 4.07

16 2.12 2.92 4.01

17 2.11 2.90 3.97

18 2.10 2.88 3.92

19 2.09 2.86 3.88

20 2.09 2.85 3.85

21 2.08 2.83 3.82

22 2.07 2.82 3.79

23 2.07 2.81 3.77

24 2.06 2.80 3.75

25 2.06 2.79 3.73

30 2.04 2.75 3.65

40 2.02 2.70 3.55

50 2.01 2.68 3.50

60 2.00 2.66 3.46

120 1.98 2.62 3.37

∞ 1.96 2.58 3.30
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These results imply that the posttreatment mean FEV
1

in the population on
treatment A is significantly different from the reference value of 2000 mL, but
baseline measurements and the posttreatment mean in the placebo group are not.
The interpretation of this finding depends on what the value of 2000 mL
represents; if it is the mean FEV

1
expected of a ‘typical’ group of patients suffering

from severe CAL, we could conclude that there is evidence to suggest that
patients who had taken drug A were significantly improved compared to the
‘typical’ group following standard treatment.

By implication, the one-sample t-test is based on the assumption that the outcome
variable is normally distributed, and it is the mean of a normal distribution that is
tested. We can check for this assumption using an inverse normal plot (Q-Q plot)
(see Chapter 17) [6]. Figure 2 shows the inverse normal plots for the four outcome
variables displayed in Table 1. As these plots are close to linear patterns, the
implication is that these samples are approximately normally distributed [6].

Paired t-test

For some uncontrolled open-label clinical trials, the main objective is to evaluate
the drug effect before and after the treatment based on changes from baseline.
This generates ‘paired’ data. The key feature of paired data is that the two samples
to be compared are not independent. Alternatively, there might be two separate
samples that have been selected in pairs to resemble each other. Statistical
analysis assesses whether the data provide evidence that there is a statistically
significant difference in the outcome variable before and after treatment within a
treatment group, in this case group A (Question 2). We can now address this
question by performing a paired t-test.

The null hypothesis can be expressed as:

H
0

: μ
d

= μ
pre

– μ
post

= 0

Treatment Time Point estimate t-value P-value 95% CI

A Pretreatment 2010.6 0.14 0.891 1845.1 2176.0

Posttreatment 2482.8 3.83 0.003 2205.1 2760.6

B Pretreatment 1992.3 –0.09 0.927 1813.4 2171.3

Posttreatment 2085.2 0.65 0.531 1795.1 2375.2

Table 4. The results from t-testing the H
0

: μ = 2000 together with 95% CIs for FEV
1

at pre-and posttreatment.
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meaning that there is no difference in pre- and posttreatment population means
of FEV

1
in group A. The alternative hypothesis is:

H
a

: μ
d

= μ
pre

– μ
post

≠ 0.

The test statistic for testing the above hypotheses is given by:

X
dt =

SE(X
d
)                 

(4)

SE(X
d
) = S

d
/ √n

where:

• X
d

is the sample mean of the paired FEV
1

difference
• S

d
is the standard deviation of the paired FEV

1
difference

• n is the number of pairs of observations (in this case, the number of patients)
• SE(X

d
) is the standard error of X

d

1,500

2,000

2,500

FE
V 1

Inverse normal

1,500 2,5002,000

Pretreatment FEV1 for A

1,500

2,000

2,500

FE
V 1

Inverse normal

1,500 2,5002,000

Pretreatment FEV1 for B

FE
V 1

Inverse normal

1,500

2,000

2,500

3,000

1,500 2,000 2,500 3,000

1,500

2,000

2,500

3,000

1,500 2,000 2,500 3,000

Posttreatment FEV1 for A
FE

V 1

Inverse normal

Posttreatment FEV1 for B

Clinical Trials: A Practical Guide  ■❚❙❘

205

Figure 2. Inverse normal plots for the four outcome variables given in Table 1.
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Under the null hypothesis, the test statistic in equation (4) is distributed as the 
t-distribution with n – 1 degrees of freedom [2,5]. Therefore, there is evidence
against the null hypothesis of H

0
at the α level of significance if |t| ≥ t

α/2,n–1
. The

corresponding 100(1 – α)% CI can be calculated from the following equation:

X
d

± t
α/2,n–1

× SE(X
d
)       (5)

Table 5 displays the individual differences in FEV
1

between pre- and
posttreatment in group A, together with some summary statistics required for the
paired t-test. Using these statistics, the paired t-test statistic is given by:

t =   
X

d = 
472.4  

= 7.56
SE(X

d
)       62.5

Table 5. The individual differences in FEV
1

between pre- and posttreatment in group A, together with summary

statistics for the paired t-test. 

S = standard deviation; SE = standard error.

Subject Treatment Pretreatment Posttreatment Difference

FEV
1

(mL) FEV
1

(mL)

4 A 1797 2215 418

6 A 2344 3117 773

7 A 1719 2051 332

10 A 1719 1969 250

11 A 2016 2264 248

12 A 2188 3117 930

16 A 2266 2953 688

18 A 2031 2379 348

19 A 2500 3035 535

22 A 1797 2215 418

23 A 1875 2264 389

24 A 1875 2215 340

n 12

X
d

472.4

S 216.4

SE 62.5
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The two-sided critical t-value for α = 0.001 (t
0.001/2,11

), according to Table 3, 
is 4.44. Since |t| is greater than t

0.001/2,11
, the P-value is <0.001. Therefore, we 

can say that there is very strong evidence against the null hypothesis, and state 
that FEV

1
is significantly increased from baseline within the population who

received active treatment group A. The 95% CI of μ
d

calculated from equation (5)
is (334.9, 609.8) mL. 

The inference of strong evidence of a difference between baseline and
posttreatment FEV

1
in the treatment group does not necessarily imply that the

treatment is effective at increasing FEV
1
. The observed significant difference

could be due to the effects of time of day, the placebo effect, the practice effect of
having used a spirometer previously when taking the follow-up reading, or a
number of other variables, rather than due to having taken drug A. To establish
whether drug A is effective, we need to compare its effect on FEV

1
with that

observed in the placebo group.

It is clear from equations (2) and (4) that the two-sample paired t-test is
equivalent to performing a one-sample t-test on the paired differences with a null
hypothesis of 0 difference. The assumption for the paired t-test is therefore that
the paired differences are normally distributed. 

Two-sample t-test

In a comparative clinical trial, the primary objective is to evaluate the efficacy and
safety of a study drug compared to a control (a placebo control or an active
control). For this purpose, a parallel design is usually employed and the two
treatment groups are compared for some outcome. 

Suppose that some continuous outcome is measured in a two-way parallel clinical
study, and the two populations (to be treated with drug A and placebo) to which
the two treatment groups are randomized are distributed normally with means μ

1

and μ
2

and standard deviations σ
1

and σ
2
, respectively. The efficacy of the test

drug, against the control, can be examined by testing the following hypotheses: 

H
0

: μ
1

= μ
2

vs                    (6)

H
a

: μ
1

≠ μ
2
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The above hypotheses address Question 3 and can be tested using a t-test statistic,
as defined in the following equation:

t =    
X

1
– X

2 (7)
SE(X

1
– X

2
)

SE(X
1

– X
2
) =

[n
1

– 1]S
1
2 + [n

2
– 1]S

2
2  

[
1  

+
1  

]  
1/2

n
1

+ n
2

– 2              n
1             

n
2

where:

• X
1
, X

2
are the sample means of the two treatment groups

• S
1
, S

2
are the sample standard deviations of the two treatment groups

• n
1
, n

2
are the number of patients in each group

• SE(X
1

– X
2
) is the standard error of difference in two sample means

Hence, if |t| ≥ t
α/2,n

1
+n

2
–2
, we can say that there is evidence against the null

hypothesis of no treatment difference (H
0

: μ
1

= μ
2
) and state that the treatment

difference is significant at the α level, where t
α/2,n

1
+n

2
–2

is the critical t-value 
of a t-distribution with n

1
+ n

2
– 2 degrees of freedom. Based on this test, 

a 100(1 – α)% CI for μ
1

– μ
2

is given by:

(X
1

– X
2
) ± t

α/2,n1+n2–2
× SE(X

1
– X

2
)

Example

We can again consider the CAL data to illustrate the use of a two-sample t-test.
The posttreatment FEV

1
concerns two independent samples. Therefore, we can

use the t-test described in equation (7) to test the null hypothesis of no treatment
difference, as described in (6). Using the summary statistics provided in Table 2,
we can calculate the t-value as 2.18. From Table 3, we have t

0.05/2,22
= 2.07 and t

0.01/2,22

= 2.82. Since t
0.05/2,22 

< 2.18 < t
0.01/2,22

, then 0.05 > P > 0.01, meaning the treatment
difference between the two posttreatment FEV

1
means is significant at the 5%

level, but not at the 1% level. The corresponding 95% and 99% CIs for μ
1

– μ
2

are (19.2, 776.1) (mL) and (–116.7, 912.0) (mL), respectively. Since the 95% CI
does not contain 0 but the 99% CI does contain 0, we reach the same conclusion
as the t-test – ie, the treatment difference in posttreatment FEV

1
between the two

groups is statistically significant at the 5% level, but not at the 1% level. 

For most purposes where the significance level is 5%, the inference here is that
CAL patients on drug A have a better FEV

1 
value. In some situations, rather than

comparing drug A with placebo, the trial design might compare drug A with a

( )  
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known efficacious drug in order to look for evidence of drug A’s superiority over
an established standard therapy. 

Assumptions

Four key assumptions are required in the two-sample t-test. Firstly, we assume
that the two treatment group populations from which the samples are drawn are
distributed normally [2–4]. 

Secondly, we assume that the variances (or standard deviations) of the two
populations are equal [2–4], ie, σ

1
2 = σ

2
2 = σ 2. The equality of variances

assumption can be formally verified with an F-test [2–4]. We can also do an
informal check by looking at the relative magnitude of the two-sample variances
S

1
2 and S

2
2. For example, if S

1
2 / S

2
2 is considerably different from 1 then the

assumption that σ
1
2 = σ

2
2 = σ 2 will be in doubt. In cases where σ

1
2 ≠ σ

2
2, we need

to use a modified t-test or nonparametric method [3–5].

Thirdly, we assume that the observations in the two treatment groups are
independent of each other, ie, no observation in one group is influenced by
another observation in the second group [3–5]. Taking the posttreatment FEV

1

as an example, the value of posttreatment FEV
1

in the active treatment group is
not affected by that in the placebo group. Therefore, the values of the two sets of
posttreatment FEV

1
measurements constitute two independent samples.

Finally, we assume that the two populations are homogeneous in terms of the
observed and unobserved characteristics of patients (ie, free from confounding).
These characteristics might be demographics (eg, age), prognosis (eg, clinical
history, disease severity), or baseline measurements of outcome variables (eg,
pretreatment FEV

1
in the CAL trial). 

Although we might never know the unobservable heterogeneity (differences)
between two populations, we can assess whether the two populations are
comparable by looking at the observed summary statistics, such as means or
proportions at baseline by treatment. This is why a table that summarizes the
baseline information in a clinical trial by treatment group is always provided in 
a clinical report. If the two treatment groups are not balanced with regard to some
of the predictors of outcome, covariate adjustment by means of stratification or
regression modeling can be employed (see Chapters 24–26) [1,4,5].
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Two-sample Z-test

If the sample sizes n
1

and n
2 
are large (say n

1
and n

2
> 50) [2–4], we can use a 

Z-statistic to test the null hypothesis in equation (6), as discussed earlier:

Z =    
X

1
– X

2

SE(X
1

– X
2
)

where SE(X
1

– X
2
) =

S
1
2

+
S

2
2 1/2

n
1            

n
2

According to statistical theory (central limit theorem), Z is approximately
normally distributed with mean 0 and standard deviation 1 when n

1
and n

2 

are large [2]. Therefore, the treatment difference will be significant at the α level
of significance if:

|Z| ≥ Z
α/2

where Z
α/2

is the critical value of the standard normal distribution (see Chapter 17) [6].
The corresponding 100(1 – α)% CI for μ

1
– μ

2
is given by:

(X
1

– X
2
) + Z

α/2
× SE(X

1
– X

2
)

Unlike the two-sample t-test, the two-sample Z-test does not require the standard
deviations to be similar (ie, σ

1
= σ

2
= σ), although there are still assumptions of

normality, independence, and homogeneity [2–4].

Two-sample Wilcoxon rank-sum (Mann–Whitney) test

In previous sections, statistical inferences have been primarily based on the
assumption that the outcome under evaluation follows a normal distribution. 
In practice, this ‘normality’ might not be present. For example, consider that the
outcome is length of stay in hospital – this outcome usually has a skewed
distribution, with most people staying a short duration. We now need different
statistical methods using nonparametric methods that do not require normality 
to draw statistical conclusions. Corresponding to the one-sample t-test, paired 
t-test, and two-sample t-test to address Questions 1, 2, and 3, three nonparametric
(or distribution-free) methods are available [7–9]: 

• Wilcoxon signed rank test
• Wilcoxon matched pairs signed rank-sum test 
• Wilcoxon rank-sum (Mann–Whitney) test 

( )  
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For illustrative purposes, we will focus on the Wilcoxon rank-sum test for
comparing two independent treatment groups.

The null hypothesis in the Wilcoxon rank-sum test is that the two samples are
drawn from a single population. The test involves the calculation of a statistic,
usually called T, whose distribution under the null hypothesis is unknown. The
Wilcoxon method requires all the observations to be ranked as if they were from
a single population. If the data are tied or equal, then averaged ranks across tied
values are used (see Table 6). Wilcoxon’s test statistic is the sum of the ranks for
the observations in the first sample [7–9]:

T
1

= Σ R
1

With this Wilcoxon’s test statistic, we can find the corresponding exact P-value
from a statistical table [7–9]. However, we will illustrate how the P-value can 
be obtained from an alternative approximate Z-test, whose working can be 
readily examined.

When the sample size in each group is large, the statistic T
1

has an approximately
normal distribution with:

mean μ
r
= √n

1
(n

1
+ n

2
+ 2) / 2

standard deviation σ
T

= n
1
n

2
(n

1
+ n

2
+ 1) / 12

From these, we can calculate the test statistic Z as (T
1

– μ
r
) / σ

r
and refer to the

standard normal distribution table for determining the P-value.

Table 5 shows the data of relative change in FEV
1
treated in this way. The sums of

the ranks in the two treatment groups are 211 and 89, respectively. So we have 
T

1 
= 211. The mean and standard deviation of the test statistic under the null

hypothesis are given by: 

μ
r
= 12 * (12 + 12 + 1) / 2 = 150

and

σ
T

= √12 * 12(12 + 12 + 1) / 12 = 17.32

yielding:

Z =
211 – 150 

= 3.5217.32

n
1

i = 1
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which, from the standard normal distribution table, corresponds to P = 0.0004.
Since P < 0.05, there is evidence against the null hypothesis that the two samples
are drawn from a single population at the 5% significance level. As the median
relative change in FEV

1
for the active treatment group is 21.1%, much higher than

6.7% in the placebo group, we can conclude that there is strong evidence to
suggest that the active drug increases FEV

1
.

Thus, we can see that using ranking to assess whether the changes are really equal
in both groups allows us to determine whether the two groups are drawn from the
same population.

Table 6. Calculation of ranks of relative changes for the Wilcoxon rank-sum test. 

Subject Treatment Relative change (%) Rank of relative change

Treatment A Treatment B

1 B 12.5 11

2 B –4.5 4

3 B –12.5 1

4 A 23.3 20.5

5 B –0.3 5

6 A 33.0 23

7 A 19.3 16

8 B 18.1 14.5

9 B –11.2 2

10 A 14.5 12

11 A 12.3 10

12 A 42.5 24

13 B 9.4 8

14 B 9.6 9

15 B 21.4 18.5

16 A 30.3 22

17 B 8.4 7

18 A 17.1 13

19 A 21.4 18.5

20 B –8.1 3

21 B 5.0 6

22 A 23.3 20.5

23 A 20.8 17

24 A 18.1 14.5

Sum of ranks T
1

= 211 T
2

= 89
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How to report t-test results

It is preferable to report the P-value itself and not to report, for example, ‘P < 0.05’
or ‘P = not significant’ as this does not give the reader an idea of the magnitude
of the statistical significance. The treatment effect and CI should be reported
(where possible) in order to give the reader an idea of the uncertainty surrounding
the estimate of the difference(s) and the clinical significance of the difference(s). 

Furthermore, if performing a two-sample t-test for a difference in means, it is
desirable to quote summary statistics for each sample (number of observations,
mean, and standard deviation or standard error), rather than just quoting the 
P-value. Equally, for a paired t-test, summary statistics for the differences between
pairs should be presented.

How to make multiple group comparisons

It often happens in research practice that we need to compare more than two
groups (eg, drug 1, drug 2, and placebo). In these cases, we need to analyze the
data using regression modeling techniques (see Chapter 24). These include
analysis of variance (ANOVA), which can be considered a generalization of the 
t-test [1,3,4]. In fact, for two-group comparisons, regression analysis will give
results identical to a t-test [1]. However, when the study design is more complex,
regression modeling offers advantages over the t-test and can avoid the problem
of conducting multiple statistical tests (see Chapter 29).

Conclusion

In this chapter, we have introduced significance test methods and corresponding
CI calculations for the analysis of continuous data (summarized in Table 7). 
Of those methods, the t-test has been widely used in data analysis and has two
important applications in clinical research: 

• to assess if there is a statistically significant change after treatment 
in an endpoint from baseline within a treatment group 

• to assess if there is a significant difference between two treatment groups

For both forms of the t-test, the test statistic is calculated by comparing the ratio
of the mean difference (or difference in means) to its standard error with a critical
t-value from a t-distribution with an appropriate number of degrees of freedom.
For large samples, the Z-test can be used to replace the t-test. 
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Table 7. Summary of statistical test methods described in this article. 

Type of tests Null hypothesis Test statistics and confidence interval Assumptions

One-sample t-test H
0

: μ = μ
0

Sample is from a 
normal distribution

Paired t-test H
0

: μ
d

= μ
pre

– μ
post

= 0 The paired population 
differences are 
normally distributed

Two-sample t-test H
0

: μ
1

= μ
2

For the two populations 
(eg, all patients to
receive treatment A
and B):
• the two samples 
are independent
• the two samples 
are from two 
normal populations
• the variances of 
the two populations 
are equal
• the two populations 
are homogeneous in 
terms of observed 
and unobserved 
characteristics 
at baseline

Two-sample Z-test H
0

: μ
1

= μ
2

• The two samples 
are independent
• The two samples 
are from two 
normal populations
• The samples have 
large sizes 
• The two populations 
are homogeneous in 
terms of observed 
and unobserved 
characteristics 
at baseline

Wilcoxon rank-sum The two samples The two samples 
(Mann–Whitney) test are drawn from are independent

a single population

t =
X – μ

0 ,df = n – 1
SE(X)

SE(X) = S / √n

CI: X ± t
α/2,n–1

× SE(X) 

T = ΣR
1i

μ
T

= n
1
(n

1
+ n

2
+ 1) / 2

σ
T

= √n
1
n

2
(n

1
+ n

2
+ 1) / 12

Z = (T – μ
T
) / σ

T

t =
X

d ,df = n – 1
SE(X

d
)

SE(X
d
) = S

d 
/ √n

CI: X
d

± t
α/2,n–1

× SE(X
d
) 

t =
X

1
– X

2 ,df = n
1

+ n
2

– 2
SE(X

1
– X

2
)

SE(X
1

– X
2
) =

[n
1

– 1]S
1

2 + [n
2

– 1]S
2

2

[
1   

+
1   

]

1/2

n
1

+ n
2

– 2             n
1          

n
2

CI: (X
1

– X
2
) ± t

α/2,n1+n2–2
× SE(X

1
– X

2
)

Z =
X

1
– X

2

SE(X
1

– X
2
)

SE(X
1

– X
2
) = 

S
1

2

+
S

2
2  1/2

n
1          

n
2

CI: (X
1

– X
2
) ± Z

α/2
× SE(X

1
– X

2
)

( )  

(  )  

n
1

i = 1
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When assessing the treatment effect in a two-arm parallel design using t-test, the
assumptions of approximate normality of distribution, approximate equality of
variance, independence of observations, and comparability of two treatment
groups at baseline should be borne in mind. When such assumptions are not
reasonable, alternative methods such as a nonparametric approach or regression
modeling should be considered. 

References

1. Pocock SJ. Clinical Trials: A Practical Approach. Chichester: John Wiley & Sons, 1983.

2. Hoel PG. Introduction to Mathematical Statistics, 2nd edition. New York: John Wiley & Sons, 1954.

3. Altman DG. Practical Statistics for Medical Research. London: Chapman & Hall, 1999.

4. Kirkwood B, Sterne J. Essential Medical Statistics, 2nd edition. Oxford: Blackwell Publishing, 2003.

5. Lee AFS. Student’s t distribution and student’s t statistics. In: Encyclopedia of Biostatistics.

Armitage P, Colton T, editors. New York: John Wiley & Sons, 1998:4396–7. 

6. Tong YL. Normal distribution. In: Encyclopedia of Biostatistics. Armitage P, Colton T, editors. 

New York: John Wiley & Sons, 1998:3064–7.

7. Wilcoxon, F. Individual comparisons by ranking methods. Biometrics 1945:1:80–3.

8. Mann H, Whitney D. On a test of whether one of two random variables is stochastically larger 

than the other. Ann Math Stat 1947;18:50–60.

9. Conover, WJ. Practical Nonparametric Statistics, 3rd edition. New York: John Wiley & Sons, 1999.

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 215



216

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 216



217

Comparison 

of Proportions

Duolao Wang, Tim Clayton, and Felicity Clemens

In clinical trials, patients’ responses to treatments are often
recorded according to the occurrence of some meaningful 
and well-defined event such as death, cure, or reduction in
severity of disease. These records generate efficacy and 
safety endpoints in the form of categorical data on either 
a nominal (specific named outcome) or ordinal scale, 
which are often summarized by proportions or percentages 
by treatment groups (or frequency tables) and displayed
graphically using bar or pie charts. In this chapter, we
introduce some fundamental concepts and methods for 
the analysis of categorical data, and illustrate their uses 
and interpretations through examples.

■■❚❙❘ Chapter 20
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Introduction

Categorical data are common in clinical research, arising when outcomes are
categorized into one of two or more mutually exclusive groups. The first step for
a categorical data analysis is to produce a frequency table of each outcome, 
and calculate relevant proportions or percentages of patients with each outcome
within each treatment group. The second step is to compare these proportions
using significance tests and confidence intervals (CIs). In this chapter, we describe
the methods for such comparisons and illustrate these with examples.

Example: myocardial infarction trial

Let us assume that a multicenter, randomized, placebo-controlled clinical trial is
conducted to determine whether a new drug, compared to placebo, reduces all-cause
mortality in 4,067 patients following myocardial infarction (MI), who otherwise
receive optimal treatment. The primary endpoint is the occurrence of death from
any cause at 30 days following randomization. This generates a binary variable (died
or survived), which is often summarized as the proportion of patients who have died.

The numbers of patients who died or survived at 30 days in each of the two
treatment groups form a 2 × 2 contingency table, as shown in Table 1. This also
shows the notations representing the number of patients in each group in
brackets. For example, we use the letters a and b to denote the number of patients
who died, c and d to denote the number of patients who survived, and n

1
and n

2
to

denote the number of patients randomized in the active drug and placebo groups,
respectively. The total number of patients is n (= n

1
+ n

2
). 

Following the above notations, the proportion of deaths in the active drug and
placebo groups are denoted by p

1
= a / n

1
and p

2
= b / n

2
, respectively. From 

Table 1, we can see that the proportion of deaths was lower in the active drug group
(p

1
= [110 / 2045] × 100 = 5.38%) than in the placebo group (p

2
= [165 / 2022] 

× 100 = 8.16%). Overall, 6.76% (p = [{a + b} / n] × 100 = [{110 + 165} / {2045
+ 2022}] × 100) of MI patients died within the first 30 days after randomization.
In this chapter, the proportion and percentage are interchangeably used in the
text, but distinguished in the formulas.

Although the observed difference in mortality from the above data is in favor of
the active drug treatment, we are not certain whether this is a real drug effect or
caused by random error, confounding, or bias (see also Chapters 1, 18, and 19) [1].
Assuming the study has no systematic bias or confounding, we can use significance
testing or CI methods to assess whether chance variation could reasonably explain
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the observed difference. In other words, we need to assess whether there is
statistical evidence against the null hypothesis that there is no difference between
the active drug and placebo in terms of mortality at 30 days. 

In the following sections, we describe some basic methods for reporting and
analyzing this type of data and illustrate these methods with the MI trial data. In
addition, we discuss dealing with analyses of outcomes with more than two categories.

Making statistical inferences for one treatment group

Consider that the true population proportions of patients who die on the active
drug or placebo are π

1
and π

2
, respectively. We aim to estimate the two population

parameters and make statistical inferences using the two respective sample
proportions, p

1
and p

2
. While the main focus of the analysis will be a comparison

of proportions in the two treatment groups, it might also be clinically useful to
know whether, within a treatment group, the proportion of patients who died is
equal to some expected value.

For example, suppose that, from other observational studies, we know that about
8% of such MI patients who are not treated with the new drug will die within 
30 days. It may be of clinical interest to know whether the proportion of MI
patients treated with the test drug is (statistically) significantly different from 8%.
The following hypotheses can be constructed to address this question:

H
0

: π
1

= π
0

= 8%

vs                      (1)

H
a

: π
1

≠ π
0

Table 1. A 2 × 2 contingency table (notation) for the myocardial infarction trial.

Death Treatment Total

Active drug Placebo

Yes 110 (a) 165 (b) 275 (a + b)

No 1935 (c) 1857 (d) 3792 (c + d)

Total 2045 (n
1
) 2022 (n

2
) 4067 (n

1
+ n

2
)

Proportion of deaths 5.38% (p
1

= a
× 100) 8.16% (p

2
= b

× 100) 6.76% (p = a + b
× 100)

n
1

n
2

n
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We can perform a Z-test to test this hypothesis. Under the null hypothesis, 
a Z-statistic approximation can be generated as follows:

Z =   
p

1
– π

0

SE(p
1
)

(2)

SE(p
1
) =        

p
1

(1 – p
1
)

n
1

where SE(p
1
) stands for the standard error of p

1
.

At a prespecified level of significance α, we have evidence against the null
hypothesis in equation (1) and conclude that the proportion of MI patients who
died in the test drug group is statistically significantly different from 8% if: 

|Z| ≥ Z
α/2

where Z
α/2

is the critical value from the standard normal distribution.

The exact P-value in the Z-test is the probability that Z ≤ – Z
α/2

or Z ≥ Z
α/2

. 
This can be determined by calculating the area under the curve in two-sided
symmetric tails from a standard normal distribution table. 

Using the data in Table 1:

p
1

= 5.38%

SE(p
1
) =       

5.38 / 100 × (1 –5.38 / 100)   
= 0.005 or 0.50%

2045

Z =
5.38% – 8%   

= –5.24
0.50%

As a result, since the absolute value of observed Z is >Z
0.05/2

= 1.96, the P-value is
<0.05, and, in fact, the actual P-value is <0.0001. Therefore, we reject the null
hypothesis at the 5% level of significance, and conclude that the proportion of MI
patients who died in the treatment group is statistically significantly different
(lower) than 8%.

Similarly, we can test whether the proportion of patients who died in the placebo
group is different from 8%. The calculated Z-value is 0.26, with an associated 
P-value of 0.798. As this P-value is >0.05, there is insufficient evidence to suggest
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that the population proportion of MI patients who died (π
2
) in the placebo group

is statistically significantly different from 8% (π
0
) at the 5% significance level. 

The detailed summary results for one-sample inference based on the Table 1 data
are presented in Table 2 for the active treatment and placebo groups, respectively.

The statistical inference for one sample can also be made by calculating a CI.
Based on equation (2), a 100 (1 – α) % CI for the population proportion in the
active treatment group (π

1
) can be obtained as: 

p
1

± Z
α/2

SE(p
1
)

Thus the 95% CI is:

5.38% ± 1.96 × 0.50% = 4.40% to 6.36%

Based on the 95% CIs, we can reach the same conclusion as the Z-test. The 95%
CI (4.40%, 6.36%) does not contain 8% in the active drug group, and we therefore
conclude that it is significantly lower than 8%. For the placebo group, the 95% CI
includes 8% (6.97%, 9.35%), so we therefore conclude that the proportion of MI
patients who died is not significantly different from 8%, as revealed in the Z-test.

In this example, death has been used as the outcome. However, the significance
testing and CI used in this example can apply to any binary outcome, such as
whether or not a patient shows improvement after treatment, whether or not
there is recurrence of disease, whether or not the patient has an admission to
hospital, and so on.

Clinical Trials: A Practical Guide  ■❚❙❘
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Table 2. Summary statistics for one-sample statistical inference by treatment for the myocardial infarction trial.

Statistics Treatment

Active drug Placebo

Null hypothesis (π
0

= 8.00%) H
0

: π
1

= π
0

H
0

: π
2

= π
0

Proportion of death (number of patients) 5.38% (2045) 8.16% (2022)

Standard error 0.50% 0.61%

Z-statistic –5.25 0.26

P-value P < 0.001 P = 0.792

95% CI (4.40%, 6.36%) (6.97%, 9.35%)
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Comparing proportions between two groups

The primary objective of the MI trial is to directly compare the proportion of MI
patients who died on the active drug with that of patients on placebo, within the
time period of the trial follow-up (30 days). The efficacy of the active drug, against
the control, can be examined by testing the null hypothesis that the proportions of
deaths in both populations are equal:

H
0

: π
1

= π
2

vs                      (3)

H
a

: π
1

≠ π
2

This section will describe three methods for testing the above hypotheses: the 
chi-squared (χ2) test, Fisher’s exact test, and the Z-test [2,3]. 

Chi-squared (χ2) test

The most common approach for comparing two proportions is the chi-squared
test. The chi-squared test involves comparing the observed numbers in each of the
four categories in the contingency table with the numbers expected if there was no
difference in proportions between the active drug and placebo groups. 

Overall, 275 / 4067 (6.76%) patients died during the trial. If the active drug and
placebo were equally effective, one would expect the same proportion of deaths in
each of the two groups: that is, 275 / 4067 × 2045 = 138.3 in the drug group and
275 / 4067 × 2022 = 136.7 in the placebo group. Similarly, 3792 / 4067 × 2045 =
1906.7 patients in the active drug group and 3792 / 4067 × 2022 = 1885.3 patients
in the placebo group would be expected to survive to 30 days after randomization. 

The expected numbers are shown in Table 3. They add up to the same row and
column totals as the observed numbers. The chi-squared value used to assess the
difference in the proportions under the null hypothesis (3) can be expressed as:

χ2 = Σ (O – E)2

E                
(4)

where:

• O represents the observed numbers in each cell of the 2 × 2 table 
• E represents the expected numbers in each cell of the 2 × 2 table 

as shown in Table 3. 
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Hence, the further the observed values are from the expected, the larger χ2 will be.
Using the data in Table 3 and formula (4), we have:

χ2 =
(110 – 138.3)2

+
(1935 – 1906.7)2

+
(165 – 136.7)2

+
(1857 – 1885.3)2

138.3                     1906.7                     136.7                     1885.3

= 12.48

Under the null hypothesis of no difference in the proportion of deaths between
the two groups, χ2 should follow a chi-squared distribution with 1 degree of
freedom (df) (see reference [3] for more about degrees of freedom). Like the 
t-distribution, the shape of the chi-squared distribution depends on the number of
degrees of freedom. 

Table 4 shows some selected critical values of the chi-squared distribution (χ2
α,df

)
with different degrees of freedom and significance levels (α). For example, when 
df = 1 and α = 0.05, χ2

0.05,1
= 3.84. To determine the probability that the observed

result or more extreme results would be observed if the null hypothesis were true,
we need to compare χ

2
with χ2

α,df
. For an observed χ2, P ≤ α if, and only if, χ2 ≥ χ2

α,df
.

Therefore, using the principles described in Chapter 18, with the chi-squared test,
we would have evidence against the null hypothesis in equation (3) and state that
the treatment difference is significant at the α level if χ2 ≥ χ2

α,df
.

For the MI trial data, since χ2 (12.48) > χ2
0.001,1

(10.83), P < 0.001. We can
therefore say that the treatment difference in the proportion of deaths between
the two treatment groups is highly significant at the α = 0.1% level.

Table 3. Calculation of chi-squared statistics using the 2 × 2 contingency table in Table 1.

Death Treatment Total

Active drug Placebo

Observed numbers

Yes 110 165 275

No 1935 1857 3792

Total 2045 2022 4067

Expected numbers

Yes 138.3 136.7 275

No 1906.7 1885.3 3792

Total 2045 2022 4067
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Assumptions

There are two important assumptions when using the chi-squared test. The first
assumption is that the two treatment groups are homogeneous in terms of the
patients’ characteristics (eg, demographic information, disease-related risk
factors, medical histories, concurrent medical treatments). We can check whether
the two groups are comparable by looking at observed baseline summary statistics.
If the two treatment groups are not balanced with regard to some predictor(s) of
outcome, logistic regression modeling can be used to adjust for these potential
confounding factors [1–3]. 

The second assumption is that the sample sizes in the two treatment arms are
large, say >50 [2,3]. If the sample size is small, we need to use the Fisher’s exact
test, which follows [2,3].

Table 4. Selected critical values of the chi-squared distribution. 

Degrees of freedom Significance level

0.05 0.01 0.001

1 3.84 6.63 10.83

2 5.99 9.21 13.82

3 7.81 11.34 16.27

4 9.49 13.28 18.47

5 11.07 15.09 20.51

6 12.59 16.81 22.46

7 14.07 18.48 24.32

8 15.51 20.09 26.12

9 16.92 21.67 27.88

10 18.31 23.21 29.59

11 19.68 24.73 31.26

12 21.03 26.22 32.91

13 22.36 27.69 34.53

14 23.68 29.14 36.12

15 25.00 30.58 37.70

16 26.30 32.00 39.25

17 27.59 33.41 40.79

18 28.87 34.81 42.31

19 30.14 36.19 43.82

20 31.41 37.57 45.31

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 224



Clinical Trials: A Practical Guide  ■❚❙❘

225

Fisher’s exact test

When the overall sample size is small or the expected frequency in any cell is <5,
an approximation using a procedure such as the chi-squared test might be
inadequate. This is because the smaller the number of patients in each cell, 
the more likely the influence of chance on the number of outcomes seen. In this
situation, we can consider Fisher’s exact method for comparing two proportions
in a 2 × 2 contingency table. This method consists of evaluating the sum of
probabilities associated with the observed frequency table and all possible 2 × 2
tables that have the same row and column totals as the observed data, but exhibit
more extreme departure from the null hypothesis of no difference [2,3]. Technical
details about calculating Fisher’s exact test are not covered here, but most
statistical packages can be used to compute this statistic very easily.

For the MI trial data, the Fisher’s exact test gives a two-sided P-value of <0.001,
leading to the same conclusion as that of the chi-squared test.

Two-sample Z-test

A chi-squared test provides a P-value, but not the point estimate of a treatment
difference and its CI. The Z-test [2,3], however, has the advantage that the point
estimate and CI can easily be calculated. 

The Z-test is defined as:

Z =    
p

1
– p

2

SE(p
1

– p
2
)

SE(p
1

– p
2
) = √( p [1 – p][1/n

1
+ 1/n

2
]) 

where:

• p =  
a+ b

n

• SE(p
1

– p
2
) is the standard error of p

1
– p

2

According to statistical theory (central limit theorem), Z has an approximately
standard normal distribution when n

1
and n

2
are large. Therefore, we can apply the

Z-test to the null hypothesis in equation (3) and state that there is a significant
difference at the α level of significance if |Z| ≥ Z

α/2
, where Z

α/2
is the critical value

from the standard normal distribution. The corresponding 100 (1 – α) % CI for
the difference in the proportion between two treatments (π

1
– π

2
) can be

calculated from the following formula:

(p
1

– p
2
) ± Z

α/2
SE(p

1
– p

2
)
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In the case of the MI trial data, the calculated Z = –3.55, which corresponds to 
a probability of P < 0.001. The estimated difference in proportions is –2.78% 
with a 95% CI of (–4.32%, –1.24%). Since the absolute Z-value is >Z

0.05/2
= 1.96

with an associated P-value of <0.001, there is very strong evidence against the null
hypothesis. It can therefore be concluded that patients in the treatment group
have a significantly lower risk of death within 30 days than patients in the placebo
group at the 5% level. One can reach the same conclusion by noting that the 
95% CI (–4.32%, –1.24%) does not contain 0%.

Assessing the size of the treatment effect in a two-arm trial

In the previous sections, we have introduced different methods for assessing
whether there is any evidence against the null hypothesis of no difference. In this
section, we describe three commonly used measurements for assessing the size of
any treatment effect.

Risk difference 

The difference in the proportion of the outcomes between two groups, p
1

– p
2
, 

is called the risk difference. In the case of the MI trial data, the risk difference is
the risk of death between the active drug and placebo, ie, 5.38% – 8.16% =
–2.78%. This means that the estimated absolute risk of death is 2.78% lower
(about three in 100 MI patients) in the active drug group compared to the placebo
group. Statistical inferences about the risk difference, such as point estimate and
CIs can be made by means of a Z-test, as described in the last section. 

Risk ratio

The risk ratio is the ratio of the risks in the active drug treatment group compared
to the placebo group. The risk ratio is often abbreviated to RR, and is also
sometimes called the relative risk:

RR =  
p

1
=  

a/n
1    

=  
a/(a+c)

p
2  b/n

2            
b/(b+d)

For the MI trial, the RR = 0.66 (5.38% / 8.16%), meaning that the risk of death
for the patients in the active drug treatment group is only 66% of the risk in the
placebo group. Equivalently, we could say that the drug treatment is associated
with a 34% (100% – 66%) reduction in mortality at 30 days.

We can make statistical inferences about risk ratio using the Z-test or CI for the
RR. If the null hypothesis of no difference between the risks in the two groups is
true, RR = 1 and hence log(RR) = 0 (‘log’ stands for natural logarithm). We can
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use log (RR) and its standard error to derive a Z-statistic and test the null
hypothesis using the following formula:

Z =    
log RR

SE(log RR)

SE(log RR) = √1/a – 1/n
1

+ 1/b – 1/n
2

where SE(log RR) is the standard error of log RR [3].

In the MI trial example:

SE(log RR) = √1/110 – 1/2045 + 1/165 – 1/2022 = 0.12

Z =     
log RR

=
log(0.66)

=  –3.46
SE(log RR)          0.12

This corresponds to a P-value of <0.001. Therefore, there is strong evidence
against the null hypothesis that RR = 1.

To calculate the 95% CI for RR, we need to follow the following steps:

Step 1: Calculate the standard error of log RR.

Step 2: Calculate the error factor (EF) as follows:

EF = exp(1.96 × SE[log RR])

Step 3: 95% CI = RR / EF to RR × EF 

Considering the MI trial data in Table 1, EF is given by:

EF = exp(1.96 × 0.12) = 1.26

The 95% CI for RR is therefore:

95% CI = 0.66 / 1.26 to 0.66 × 1.26 = 0.52 to 0.83

Once more, we are able to conclude that RR is significantly different from 1 at the
5% significance level.
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Odds ratio

A third measure of treatment effect is the odds ratio (OR). The odds of an
outcome event are calculated as the number of events divided by the number of
nonevents. For example, in the active treatment arm in the MI trial, the number
of deaths is 110 and the number of survivals is 1,935, so the odds of death are 
110 / 1935 = 0.057. If the odds of an event are >1, the event is more likely to
happen than not. In particular, the odds of an event that is certain to happen are
infinite, and the odds of an impossible event are zero. The OR is calculated by
dividing the odds in the active treatment group (a / c) by the odds in the placebo
group (b / d):

OR =  
a/c

=  
ad

b/d bc

For the MI trial data, the OR is calculated as (110 × 1857) / (1936 × 165) = 0.64,
meaning that the odds of deaths after MI in the drug group are 64% of the odds
in the placebo group. Clinical trials typically look at treatments that reduce the
proportion of patients with an event or, equivalently, have an OR of <1. In these
cases, a percentage reduction in the OR is often quoted instead of the OR itself. 
For the preceding OR, we can say that there is a 36% (100% – 64%) reduction in
the odds of deaths in the active treatment group. 

As for the RR, we can also carry out statistical inference about the OR in the
population. We can test the null hypothesis that the OR = 1; hence, that the odds
of death are equal in both treatment groups. The following formula can be used
for performing a hypothesis test:

Z =    
log OR

SE(log OR)

SE(log RR) = √1/a + 1/b + 1/c + 1/d

where SE(log OR) is the standard error of logarithmic odds ratio.

Considering the data from the MI trial in Table 1, we have the standard error of
the log OR as:

SE(log OR) = √1/a + 1/b + 1/c + 1/d = √1/110 + 1/165 + 1/1935 + 1/1875 = 0.13

so, Z = log(0.64) / 0.13 = –3.43
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This corresponds to a P-value <0.001. Therefore, there is strong evidence against
the null hypothesis that the OR = 1. CIs for ORs are calculated in a similar fashion
as for RRs. The results are shown in Table 5. 

Relationships between risk ratio and odds ratio

As discussed in the last section, the risk ratio and odds ratio are two different
measurements of treatment effects in clinical research. The risk ratio has
immediate intuitive interpretation. It is relatively easy to explain that, for example,
if the RR = 0.50, patients in the active treatment group have half the risk of having
an event than patients in the placebo group (RR = 1/2). By contrast,
interpretation of the odds ratio is more difficult. 

In clinical papers, it is common to mistake the odds ratio for a risk ratio; indeed,
when events are rare, the odds ratio and risk ratio are very similar. For example,
in the MI trial, the risk ratio of death is 0.66, very close to the odds ratio of 0.64,
because the mortality rate is small (6.76% in total). This close approximation
holds only when events are rare. For common outcomes, the odds ratio and risk
ratio can be markedly different. Figure 1 shows the relationship between the odds
ratio and risk ratio for hypothetical studies assessing the active treatment effect on
improving cure rate (synonymous with risk) of a disease. Each line on the graph
relates to a different risk in the placebo group. We can use this graph to get a grasp
of how misleading it could be to interpret an odds ratio as if it were a risk ratio. 

It is clear from Figure 1 that when the risk in the placebo group is low, say 1%, the
odds ratio is a good approximation of the risk ratio. For example, when RR = 4.8,
OR = 5. However, when the risk is 50%, RR = 1.7 is equivalent to OR = 5.

Table 5. Three measurements for comparing a binary outcome between two treatment groups, together with

the results for the myocardial infarction trial data in Table 1.

p
1

= 5.38% for active drug; p
2

= 8.16% for placebo.

Measure of comparison Formula Value 95% CI Z-statistics P-value

Risk difference p
1

– p
2

–2.78% (–4.32%, –0.24%) –3.53 <0.001

Risk ratio (relative risk) p
1

/ p
2

0.66 (0.52, 0.83) –3.46 <0.001

Odds ratio a/c  = ad 0.64 (0.50, 0.82) –3.43 <0.001
b/d bc
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Why use odds ratios?

If odds ratios are difficult to interpret, why do we not always use risk ratios
instead? There are several reasons for this, most of which are related to the
superior mathematical properties of odds ratios. Firstly, odds ratios can always
take values between zero and infinity, which is not the case for risk ratios. For
example, if the risk of death is 0.60, it is not possible to double it. Odds ratios also
possess symmetry: if the outcomes in the analysis are reversed, the relationships
will have reciprocal odds ratios. In case of the MI trial data, we have:

OR(death) = 1 / OR(survival)

However, no such relationship exists for risk ratios. In addition, if we need to
make adjustments for confounding factors using regression, odds ratios can be
modeled very easily by a logistic regression model, whereas a regression model for
risk ratios cannot always be fitted. Furthermore, while a risk ratio is only accurate
with complete subject follow-up, an odds ratio is a useful measure of association
for a variety of study designs, such as a case-control study.

Figure 1. Relationship between odds ratio and risk ratio.
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Comparing endpoints with more than two categories 

by treatment groups

In some clinical trials, a discrete efficacy or safety point has more than two
categories (ordered or unordered). For example, in cardiovascular trials dealing
with patients with heart failure, the New York Heart Association (NYHA)
classification (four classes: I, II, III, and IV) is often used as a measure of a
patient’s functional capacity with respect to heart failure. We might also need to
compare more than two groups (eg, drug 1, drug 2, and placebo), which gives 
a r × c contingency table (r = rows and c = columns). This can be analyzed by 
a chi-squared test in a similar way to a 2 × 2 contingency table [2,3]. 

Table 6 presents some data on NYHA class, measured at the end of a
cardiovascular trial. This is a 4 × 2 contingency table with four rows standing 
for the four NYHA classes and two columns representing the two treatments. 
For this table, the chi-squared test can be used to assess whether the percentage
distributions in NYHA class are statistically significantly different between the
two treatments. Following the procedures described above for a 2 × 2 contingency
table, we obtained χ2 = 2.74. For an r × c contingency table, the number of the
degrees of freedom is (r – 1) × (c – 1) = (4 – 1) × (2 – 1) = 3. From Table 4, 
we have χ2

0.05,3
= 7.81. Since χ2 < χ2

0.05,3
, P > 0.05. We can therefore conclude that

there is insufficient evidence to suggest that the two population percentage
distributions of NYHA class are significantly different. 

It should be noted that the chi-squared test compares the distribution of four
NYHA classes, not taking into account the ordinal nature of NYHA class. 
For an r × c contingency table with an ordered categorical variable like NYHA
class, we can also use the nonparametric Wilcoxon rank sum (Mann–Whitney) 
test to assess whether there is a statistically significant difference in the outcome
distribution between treatment groups (see Chapter 19). In the case of the NYHA
data in Table 6, the Wilcoxon rank sum test yields a P-value of >0.05, suggesting

Table 6. Number (%) of patients in NYHA classes by treatment in a cardiovascular trial.

NYHA Treatment

Active drug Placebo

Class I 276 (7.6) 267 (7.5)

Class II 1946 (53.8) 1932 (54.4)

Class III 1334 (36.9) 1280 (36.0)

Class IV 58 (1.6) 74 (2.1)

Total 3614 (100.0) 3553 (100.0)
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Table 7. Summary of the statistical test methods described in this chapter.
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that the NYHA distribution in the active treatment group is not significantly
different from that in the placebo group.

Conclusion

In this chapter, we have described statistical methods for the analysis of
categorical data, focusing mainly on the analysis of 2 × 2 tables (see Table 7).
Generally, a chi-squared test can be used to analyze any r × c contingency table,
involving the calculation of the expected numbers of frequencies in each cell and
then comparing these to the observed numbers. The purpose of the chi-squared
test is to assess whether the percentage distributions differ among different
groups. The limitation of a chi-squared test is that it does not produce a point
estimate or CI for the treatment effect. 

To quantify the treatment effect in a clinical trial, the risk difference, risk ratio, 
or odds ratio for a binary endpoint can be used to address different research
questions. It should be noted that the latter two are different measures, except
when the outcome event is rare.

It is important to appreciate how proportions or percentages of outcomes are
compared in a trial so that we can be clear about when to use terms such as ‘odds
ratios’ and ‘risk ratios’. These statistical tools are appropriate in specific situations:
an odds ratio is useful for summarizing treatment effects in systematic reviews and
determining the epidemiology risk of a particular exposure, while a risk ratio is
useful in a balanced trial to represent the benefit of a treatment exposure. 
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Analysis of 

Survival Data

Duolao Wang, Tim Clayton, and Ameet Bakhai

In clinical research, an endpoint is often the time to the
occurrence of some particular event, such as the death of a
patient. These types of data are known as time-to-event data 
or survival data. However, the event of interest need not be
death, but could be some other well-defined event, such as 
the first episode of malaria in a vaccine trial or the end of a
period spent in remission from a disease. The outcome could
also be a positive event, such as relief from symptoms. In this
chapter, we introduce some fundamental methods for the
analysis of such survival data and illustrate their applications
through examples.

■■❚❙❘ Chapter 21
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Introduction

In many clinical trials, the outcome is not just whether an event occurs, but also
the time it takes for the event to occur. For example, in a cancer study comparing
the relative merits of surgery and chemotherapy treatments, the outcome
measured could be the time from the start of therapy to the death of the subject.
In this case the event of interest is death, but in other situations it might be the
end of a period spent in remission from cancer spread, relief of symptoms, or a
further admission to hospital. These types of data are generally referred to as
time-to-event data or survival data, even when the endpoint or the event being
studied is something other than the death of a subject. The term survival analysis
encompasses the methods and models for analyzing such data representing time
free from events of interest. 

Example: pancreatic cancer trial

The death rate from pancreatic cancer is amongst the highest of all cancers. 
A randomized controlled clinical trial was conducted on 36 patients diagnosed
with pancreatic cancer. The aim of this trial was to assess whether the use of a new
treatment A could increase the survival of patients compared to the standard
treatment B. Patients were followed-up for 48 months and the primary endpoint
was the time, in months, from randomization to death. Table 1 displays the
survival data for the 36 patients. We will use this example to illustrate some
fundamental survival analysis methods and their applications. 

Basic concepts in survival analysis

Censoring

In survival analysis, not all subjects are involved in the study for the same length 
of time due to censoring. This term denotes when information on the outcome
status of a subject stops being available. This can be because the patient is lost to
follow-up (eg, they have moved away) or stops participating in the study, or
because the end of the study observation period is reached without the subject
having an event. Censoring is a nearly universal feature of survival data. Table 2
summarizes the main reasons for censoring that can occur in a clinical trial.
Survival analysis takes into account censored data and, therefore, utilizes the
information available from a clinical trial more fully.
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Table 1. Survival data for 36 patients with pancreatic cancer in a trial of a new treatment versus the 

standard treatment.

New treatment Standard treatment

Survival time Survival status Survival time Survival status

(months) (0 = survival, 1 = dead) (months) (0 = survival, 1 = dead)

2 0 3 0

5 0 5 1

10 1 6 0

12 1 7 1

15 0 8 1

27 1 10 1

36 0 11 0

36 0 12 1

37 1 13 0

38 0 15 1

39 0 16 0

41 0 23 1

42 0 30 1

44 0 39 1

45 1 40 1

46 0 45 1

48 0 48 0

48 0 48 0

Table 2. Reasons for censoring observations in clinical trials.

Reason Example 

Lost to follow-up Patient moved away or did not wish to 
continue participation 

Patient withdrawn Patient withdraws from the study due to side-effects

Patient has an outcome that prevents the possibility Death from cancer where death from cardiac causes 
of the primary endpoint (competing risk) is the primary endpoint

Study termination All patients who have not died are considered 
censored at the end of the study
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Survival function and hazard function

In survival analysis, two functions are of central interest, namely survival function
and hazard function [1,2]. The survival function, S(t), is the probability that the
survival time of an individual is greater than or equal to time t. Since S(t) is 
the probability of surviving (or remaining event-free) to time t, 1 – S(t) is the
probability of experiencing an event by time t. Put simply, as t gets larger, 
the probability of an event increases and therefore S(t) decreases. Plotting a graph
of probability against time produces a survival curve, which is a useful component
in the analysis of such data. Since S(t) is a probability, its value must be ≥0 but ≤1.
When t = 0, S(0) = 1, indicating that all patients are event-free at the start of
study. Within these restrictions, the S(t) curve can have a wide variety of shapes. 

The hazard function, h(t), represents the instantaneous event rate at time t for 
an individual surviving to time t and, in the case of the pancreatic cancer trial, 
it represents the instantaneous death rate. With regard to numerical magnitude,
the hazard is a quantity that has the form of ‘number of events per time unit’ 
(or ‘per person-time unit’ in an epidemiological study). For this reason, the hazard
is sometimes interpreted as an incidence rate. To interpret the value of the hazard,
we must know the unit in which time is measured.

For the pancreatic cancer trial, suppose that the hazard of death for a patient is
0.02, with time measured in months. This means that if the hazard remains
constant over one month then the death rate will be 0.02 deaths per month (or per
person-months). In reality, the 36 patients contributed a total of 950 person-months
and 16 deaths. Assuming that the hazard is constant over the 48-month period and
across all patients, an estimate of the overall hazard is 16 / 950 = 0.017 deaths 
per person-month.

The hazard function is a very useful way of describing the probability distribution
for the time of event occurrence. It can be a constant, as illustrated above, or it
can be more complex. For example, if h(t) = λ (λ > 0), we have what is known as
an exponential survival distribution. If h(t) = λtα (λ > 0; λ and α are constants), 
we get the Weibull distribution [1,2].

Every hazard function has a corresponding survival function as described by the
following equation:

S(t) = exp{– ∫ h(u)du}
For the exponential distribution h(t) = λ, we substitute this hazard function into
the above equation, perform the integration, and obtain the survival function 
S(t) = e–λt. 
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Estimating and comparing survival curves

Survival characteristics can be described by a survival function, S(t), as described
above. Two methods are available to estimate the survival function: 

• the parametric method 
• the nonparametric method

These vary, depending on whether the underlying survival distribution of the
population is known. 

In the parametric approach, a particular survival distribution is assumed
(exponential, Weibull, etc). If we know the population distribution that the sample
was taken from, we can estimate the survival function, S(t), by determining its
parameters through a maximum likelihood approach. For example, if the survival
data of the pancreatic cancer trial follow an exponential survival distribution then
we only need to estimate the parameter λ, whose maximum likelihood estimate
(λ) is simply the ratio between the number of deaths and the number of total
months. If λ = 0.017 deaths per month (ie, the overall rate), the estimated survival
function will therefore be S(t) = e–0.017t. 

In actual applications, however, we rarely know the population survival distribution,
and instead use a nonparametric approach to describe the data – the nonparametric
approach does not require any presumption of a survival distribution. 

The Kaplan–Meier method

The most common nonparametric method is the Kaplan–Meier (KM) approach.
This estimates the proportion of individuals surviving (ie, who have not died or
had an event) at any given time in the study [1,2]. When there is no censoring in
the survival data, the KM estimator is simple and intuitive. S(t) is the probability
that an event time is greater than t. Therefore, when no censoring occurs, the 
KM estimator, S(t), is the proportion of observations in the sample with event
times greater than t. For example, if 50% of observations have times >10, we have
S(10) = 0.50.

Censored observations in the dataset can complicate matters. If this is the case
then the KM estimator can be determined by following this procedure:

Step 1: Rank the event times in ascending order. Suppose there are k distinct
event times, t

1
< t

2
< …< t

k
. Note that more than one event can occur

at each time t
j
.
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Step 2: Determine the number of individuals at risk and the number of events
at each time. At each time t

j
, there are n

j
individuals who are said to 

be at risk of an event. ‘At risk’ means that they have not experienced 
an event, nor have they been censored prior to time t

j
. Cases that 

are censored at exactly time t
j
are also considered to be at risk at t

j
. 

Let d
j
be the number of individuals who have an event at time t

j
.

Step 3: Calculate the KM estimator using the following formula:

S(t
1
) = 1 –  

d
1

n
1

S(t
2
) = S(t

1
) ×  

1 – d
2

n
2

...

S(t
j
) = S(t

j–1
) ×  

1 – d
j

n
j

Table 3. Kaplan–Meier estimate of survival function for patients receiving treatment A in the pancreatic 

cancer trial.

Survival time (months) t
j

Number at risk at t
j
n

j
Number of events at t

j
d

j
Survival function at t

j
S(t

j
)

2 18 0 1.000

5 17 0 1.000

10 16 1 0.938

12 15 1 0.875

15 14 0 0.875

27 13 1 0.808

36 12 0 0.808

37 10 1 0.727

38 9 0 0.727

39 8 0 0.727

41 7 0 0.727

42 6 0 0.727

44 5 0 0.727

45 4 1 0.545

46 3 0 0.545

48 2 0 0.545

( )

( )

( )

^

^ ^

^ ^
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In other words,

S(t
j
) =   

1 – d
1 ×

1 – d
2 × ... ×

1 – d
j

n
1

n
2                                       

n
j

where t
1
≤ t

j
≤ t

k
.

Table 3 displays the derivation of the KM estimate of survival function for patients
receiving treatment A from the pancreatic cancer trial. The table estimates that
the proportion of surviving patients is 87.5% at 12 months, 80.8% at 36 months,
and 54.5% by the end of the study. 

Kaplan–Meier survival curves

The KM estimates of the survival curves by the two treatment groups for the
pancreatic cancer trial data are displayed in Figure 1. The survival curve is shown

Figure 1. Kaplan–Meier survival functions by treatment group for the pancreatic cancer trial data.

Number of patients at risk.

Time (months) 0 6 12 18 24 30 36 42 48

Treatment A 18 17 15 14 14 13 12 6 2

Treatment B 18 16 11 8 7 6 6 4 2
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in a step function: the curve is horizontal at all times at which there is no event,
with a vertical drop corresponding to the change in the survival function at each
time, t

j
, when an event occurs. 

In reports, KM curves are usually displayed in one of two ways. The curves can
decrease with time from 1 (or 100%), denoting how many people survive (or remain
event-free). However, in general it is recommended that the increase in event rates
is shown starting from 0 (or 0%) subjects with an increasing curve (1 – S[t]), unless
the event rate is high [3]. Placing the curves for different treatment groups on the
same graph allows us to graphically review any treatment differences. 

Limitations of the Kaplan–Meier method

The KM method has some limitations, however. As survival rates are calculated
throughout the study, a decreasing number of subjects will be available for 
follow-up as the curve progresses with time. Therefore, near the end of the study,
when we have a relatively small number of subjects who have survived and are still
at risk, the data are less representative of the overall effect and some sensible 
cut-off is needed in order to represent the data. 

For this reason, a well-presented chart will also include a table to show the number
of people available to the study and event-free at each point in time, as shown in
Figure 1, which allows an appreciation of the censored data [3]. In addition, the KM
method is a descriptive statistical approach and therefore does not estimate the
treatment effect. To establish whether there is any significant statistical difference
in the survival rates between the treatment groups, a statistical test is required.

Log-rank test

For the two KM curves by treatment group shown in Figure 1, the obvious
question to ask is: “Did the new treatment make a difference in the survival
experience of the two groups?” A natural approach to answering this question is
to test the null hypothesis that the survival function is the same in the two groups:
that is H

0
: S

1
(t) = S

2
(t) for all t, where 1 and 2 represent the new treatment and

the standard treatment, respectively.

The above hypothesis can be assessed by performing a log-rank test [1,2,4]. The
main purpose of this test is to calculate the number of events expected in each
treatment group, and to compare this expected number of events with the
observed number of events in each treatment group if the null hypothesis is true.
The log-rank statistic can be computed by the following steps:

Step 1: Pool the two groups and sort the event times in ascending order.
Suppose there are r distinct event times, t

1
< t

2
< … < t

r
.

^
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Step 2: Determine the number of individuals at risk and the number of events at
each time in each group, as well as in the two groups combined. At each
time t

j
(t

1
≤ t

j
≤ t

r
), we assume there are n

1j
, n

2j
, and n

j
individuals at risk

of the event and d
1j
, d

2j
, and d

j
individuals who have had an event in

groups 1, 2, and the two groups combined, respectively.

Step 3: Calculate the expected number of events and the variance of v
1j

in group 1
at each time t

j
. The expected number of events is given by:

e
1j

= 
n

1j
–  d

j

nj

and the variance of v
1j

is given by:

v
1j

= 
n

1j
n

2j
d

j
(n

j
– d

j
)

n2
j
(n

j
– 1)

Step 4: Calculate the log-rank statistic using the following formula:

U
L

= Σ (d
1j

– e
1j
)

V
L

= Σ (v
1j
)

χ2 = U
2
L

V
L

where χ2 is a chi-squared statistic that follows chi-squared distribution with one
degree of freedom (see Chapter 20 for more about the chi-squared [χ2] test).

The detailed calculation for the pancreatic cancer trial data is displayed in Table 4:
U

L
= –4.4776, V

L
= 3.6967, so:

χ2 = 
(–4.4776)2

= 5.42
3.6967

This χ2 value is converted to a P-value of 0.020. As P < 0.05, the log-rank test has
shown a significant survival difference between the new treatment A and standard
treatment B. This test readily generalizes to three or more groups, with the null
hypothesis that all groups have the same survival function. If the null hypothesis
is true, the test statistic has a chi-squared distribution with the degrees of freedom
equal to the number of groups minus 1.

r

j=1

r

j=1
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Limitations to the log-rank test

There are three major limitations to the log-rank test. 

• It does not provide a direct estimate of the magnitude of treatment effect. 
• It is mainly used to compare groups on the basis of a single variable, 

such as treatment. 
• It is more likely to detect a difference between groups when the risk 

of an event is consistently higher for one group than another, but it 
is unlikely to detect the difference when survival curves cross [1,2]. 

KM survival curves should always be plotted before making group comparisons.
In addition, all of the above shortcomings can be overcome by the application of
a hazards regression model, such as the Cox proportional hazards model,
introduced in the next section [1,2].

Table 4. Calculation of the log-rank statistic for the pancreatic cancer trial data. 

A = new treatment; B = standard treatment.

Time (months) Treatment A Treatment B Total Treatment A

d
1j

n
1j

d
2j

n
2j

d
j

n
j

e
1j

v
1j

5 0 17 1 17 1 34 0.5000 0.2500

7 0 16 1 15 1 31 0.5161 0.2497

8 0 16 1 14 1 30 0.5333 0.2489

10 1 16 1 13 2 29 1.1034 0.4770

12 1 15 1 11 2 26 1.1538 0.4686

15 0 14 1 9 1 23 0.6087 0.2382

23 0 13 1 7 1 20 0.6500 0.2275

27 1 13 0 6 1 19 0.6842 0.2161

30 0 12 1 6 1 18 0.6667 0.2222

37 1 10 0 5 1 15 0.6667 0.2222

39 0 8 1 5 1 13 0.6154 0.2367

40 0 7 1 4 1 11 0.6364 0.2314

45 1 4 1 3 2 7 1.1429 0.4082

Total 5 9.4776 3.6967
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Proportional hazards model

Model description

As described earlier, the hazard function h(t) is the risk that a subject experiences
an event at time t given that the subject has not experienced the event up to t. The
proportional hazards model relates the hazard function to a number of covariates
(such as the patient’s characteristics at randomization and the treatment received
in a clinical trial) as follows [1,2,5]:

h
i
(t) = h

0
(t)exp(b

1
x

1i
+ b

2
x

2i
+ … + b

p
x

pi
) (1)

where x
ki

is the value of the covariate x
k
(k=1, 2,..., p) for an individual i (i=1, 2,..., n).

The equation shows that the hazard for individual i at time t is the product of 
two factors: 

• A baseline hazard function h
0
(t) that is left unspecified, except that it

cannot be negative.
• A linear function of a set of p fixed covariates, which is then exponentiated.

The baseline hazard function can be regarded as the hazard function for individuals
whose covariates all have value 0 and changes according to time t.

Two basic types of model are available for us to use, depending on whether we
specify h

0
(t). In general, if we specify a parametric function for h

0
(t) in equation (1),

we will have a parametric hazards regression model. So, if we specify h
0
(t) = λtα,

we get the Weibull hazards regression model. The most widely used hazards
regression model, however, is the Cox regression model, in which such choices of
h

0
(t) are unnecessary [1,2]. In the Cox model, the baseline hazard function h

0
(t)

can take any form. Therefore, the Cox regression model is sometimes called 
a semi-parametric hazards regression model and is commonly referred to as the
Cox proportional hazards regression model.

Proportional hazards assumption

Why is this called a proportional hazards model? The reason is that while the
baseline hazard can constantly change over time, the hazard for any individual is
assumed to be proportional to the hazard for any other individual for all times t,
and will depend on the covariate values. To illustrate this, let us assume that the
model has only one covariate (treatment, x

1i
, x

1i 
= 0 for standard treatment and 

1 for new treatment). We first calculate the hazards for two individuals 1 and 2
according to equation (1) and then take the ratio of the two hazards:
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h
1
(t) = h

0
(t)exp(b

1
x

11
)

h
2
(t) = h

0
(t)exp(b

1
x

12
)

h
1
(t)

= exp(b
1
[x

11
– x

12
])             (2)

h
2
(t)

What is important about equation (2) is that h
0
(t) is canceled out of the numerator

and denominator. As a result, the ratio of hazards, exp(b
1
[x

11
– x

12
]), is constant

over time. In this example, exp(b
1
[x

11
– x

12
])= exp(0)= 1 if the two individuals have

the same treatment, or exp(b
1
[x

11
– x

12
]) = exp(b

1
) (or exp[–b

1
]) if they have

different treatments. After performing a logarithmic transformation to both sides
of equation (2), we have the following equation:

log(h
1
[t]) – log(h

2
[t]) = b

1
(x

11
– x

12
)

If we plot the log hazards for the two individuals, the proportional hazards
property implies that the hazard functions should strictly have the same distance
at any time during the study as shown in Figure 2. If these curves cross each other
or diverge, then the proportional hazards (sometimes called proportionality)
assumption may not be met. 

Figure 2. Proportional hazards assumption: equal distance between two hazard functions for two individuals.

Lo
g 

ha
za

rd
 fu

nc
tio

n

Time

Individual 1
Individual 2

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 246



Clinical Trials: A Practical Guide  ■❚❙❘

247

However, the graphical method to assess proportionality is still a subjective
approach and does not provide a statistical test for assessing the proportional
assumption for a group of covariates. The proportionality can be formally assessed
using a chi-squared test with the two hazard functions proportional in the null
hypothesis, ie:

H
0

:   
h

1
(t)

= γ
h

2
(t)

where γ is a constant [1,2]. 

If nonproportionality is found in an analysis, the proportional hazards model (1)
is no longer suitable and more complex modeling may be necessary, for example
by incorporating some sort of interaction between treatment and time into the
model [1,2]. 

Interpretation of regression results

Table 5 displays the extracted results from the Cox proportional model analysis of
primary endpoint in the CHARM (Candesartan in Heart failure Assessment of
Reduction in Morbidity and mortality) trial [6]. In this trial, the primary endpoint
was the time to first occurrence of cardiovascular death or hospitalization due 
to chronic heart failure (CHF). Table 5 gives the coefficient estimate (b

k
) and

associated statistics. The column labeled hazard ratio is ebk. 

For a binary (dummy) variable with values of 1 and 0, the hazard ratio can be
interpreted as the ratio of the estimated hazard for those with a value of 1 to the
estimated hazard for those with a value of 0 (controlling for other covariates). 
For example, the estimated hazard ratio for the variable ‘female’ is 0.83. This 
means that the hazard of having a cardiovascular death or CHF hospitalization 
for females is estimated to be 83% (95% confidence interval [CI] 76%, 91%) 
of the hazard for males (controlling for other covariates).

For a quantitative covariate, a more helpful statistic is obtained by subtracting 1
from the hazard ratio and multiplying by 100. This gives the estimated percent
change in the hazard for each 1-unit increase in the covariate. For the variable
‘age’ in Table 5, the hazard ratio is 1.04, yielding (1.04 – 1) × 100 = 4. Therefore,
for each 1-year increase in the age of the patient at randomization, the hazard of
having a primary endpoint goes up by an estimated 4% (95% CI 3%, 5%).

For a categorical covariate, the hazard ratio can be interpreted as the ratio 
of hazard for those in a group compared with that of the reference group. 
For example, the covariate ‘diabetes’ has three categories: 
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• no diabetes
• insulin-treated diabetes
• non-insulin-dependent diabetes

In the Table 5 analysis, the group with no diabetes was chosen as the reference
group. The estimated hazard ratios for patients with insulin- and non-insulin-
dependent diabetes at baseline are 2.03 and 1.58, respectively. Therefore, for
diabetic patients on insulin there is a doubling in hazard compared with
nondiabetics, whereas non-insulin-dependent diabetics have a 58% increase 
in hazard.

Table 5. Selected predictors of cardiovascular death or hospitalization due to chronic heart failure (CHF) 

in the CHARM trial (7,599 patients) [5]. 

CI = confidence interval; DBP = diastolic blood pressure; hosp = hospitalization; NYHA = New York Heart Association.

Variables Coefficient Hazard ratio 95% CI P-value

Age (years) 0.04 1.04 1.03 1.05 <0.0001

Diabetes

Insulin treated (vs none) 0.71 2.03 1.80 2.29 <0.0001

Non-insulin-dependent (vs none) 0.46 1.58 1.43 1.74 <0.0001

Ejection fraction (per 5%) –0.12 0.88 0.87 0.90 <0.0001

Prior CHF

Prior CHF hosp within 6 months 0.55 1.73 1.55 1.93 <0.0001
(vs no prior CHF)

Prior CHF hosp, but not within 6 months 0.20 1.22 1.09 1.37 <0.001
(vs no prior CHF)

Cardiomegaly (vs none) 0.30 1.35 1.23 1.47 <0.0001

NYHA

Class III (vs class II) 0.28 1.32 1.20 1.45 <0.0001

Class IV (vs class II) 0.43 1.54 1.25 1.89 <0.0001

DBP (10 mm Hg) –0.11 0.9 0.86 0.93 <0.0001

Heart rate (10 beats/min) 0.08 1.08 1.05 1.11 <0.0001

Candesartan (vs placebo) –0.20 0.82 0.76 0.89 <0.0001

Dependent edema (vs none) 0.21 1.23 1.12 1.35 <0.0001

Female (vs male) –0.18 0.83 0.76 0.91 <0.0001
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Assessing the size of treatment effect in a two-arm trial 

for survival data

In this section, we introduce some measurements of treatment effect in a two-arm
trial and discuss their advantages and disadvantages.

Risk difference, risk ratio, and odds ratio

Risk is simply measured as the proportion of subjects who have an event of
interest by a specific time point. The odds are the ratio of patients with an event
compared to those without the event [5]. The risk difference or ratio and the odds
ratio are sometimes used to measure the treatment effect at a specific point in
follow-up when an endpoint is time to the occurrence of an event. However, these
measurements may be biased for the following reasons: 

• They are based on the assumption that all patients were followed-up 
to the end of the study if they had not died. In our example, not all
patients who had not died reached 48 months of follow-up due 
to censoring.

• Patients with censored events might not be balanced between the 
two groups. 

• No distinction is made between patients who die at 1 month 
and those who die at 48 months.

Incidence rate difference and ratio

To take different follow-up times into account, we can calculate an incidence rate,
ie, the number of events divided by the number of units of time [5]. By comparing
the incidence rates between treatment groups, we can derive the incidence 
rate difference and ratios following the procedures described by Kirkwood and
Sterne [5]. For the pancreatic cancer trial data, the incidence rates are calculated
as 0.9 and 2.9 deaths per 100 person-months for the new treatment group and the
standard treatment group, respectively. The estimates of incidence rate difference
and rate ratio, together with their 95% CI and P-value, are as follows:

• incidence rate difference: –2.0, 95% CI (–3.9, –0.1), P = 0.034
• incidence rate ratio: 0.30, 95% CI (0.08, 0.94), P = 0.026

The above results suggest that the new treatment reduces deaths by two per 
100 person-months, with a 95% CI of 0.1, 3.9 per 100 person-months, and that the
incidence rate for patients in the new treatment group is only about 30% of the
incidence rate for those in the standard treatment group.
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Although the incidence rate uses the information on censored observations, it is
based on the assumption that the hazard of an event is constant during the study
period or has an exponential distribution. In the case of the pancreatic cancer
trial, it means that the hazard of death is constant over the 48-month period.
However, the risk of an event can change with time. To overcome this problem,
the Cox model, which does not require such assumptions, can be used to derive 
a better measurement for the treatment effect.

Hazard ratio 

The treatment can be simply measured as a binary covariate (1 for new treatment
A and 0 for standard treatment B in the pancreatic cancer trial) and introduced
into a Cox proportional hazards model. In the pancreatic cancer trial, the
estimated hazard ratio of death for patients who received treatment A to those
who received standard treatment B is 0.31, with 95% CI (0.11, 0.89), P = 0.030.
This means that the new treatment is estimated to reduce the hazard of death by
69%, with 95% CI (11%, 89%), and the reduction in hazard is statistically
significant at the 5% significance level. As there is only one covariate (treatment)
in the Cox model, the estimated hazard ratio is called a crude or unadjusted
treatment effect. The adjusted hazard ratio for the treatment will be generated 
if other baseline patient characteristics are introduced into the model.

The assumption of the Cox proportional hazards model is that the hazard ratio
between two treatment groups is constant over the entire time interval. As direct
estimates of a hazard function are difficult, especially when the sample size is 
small, the proportionality is often checked visually by plotting two log–log survival
curves [1,2]. A log–log survival curve or log (–log [survival rate]) is a logarithmic
transformation of negative logarithmically transformed survival function.
According to statistical theory, if two hazard functions are proportional, the two
log–log survival curves differ by a constant amount [1,2]. 

Figure 3 displays the estimated log–log survival curves for the two treatment
groups in the pancreatic cancer trial. We see that the two curves are approximately
the same shape and are nearly parallel over the study period, so the proportional
hazards assumption does not seem to be seriously violated. A formal statistical
test of proportional hazards assumption yields a chi-squared value of 0.20 with 
a P-value of 0.655. Since P = 0.655, we accept that the proportional hazards
assumption holds true since there is no evidence against the null hypothesis. 
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Conclusion

Survival analysis is the study of the duration of time to the occurrence of event
outcomes, and is a means of determining the influence of covariates on the
occurrence and timing of events. It is a set of techniques that utilize all of the
information on survival time, including censored (or incomplete) data. KM curves
are a powerful way of showing data and visually displaying differences between
the study groups. 

We can test the data by looking at the event history of subjects, with respect to
treatment, by using the log-rank test, and then extend the analysis further to
estimate treatment effects by using the Cox proportional hazards model. When
analyzing and reporting clinical trials with time-to-event outcomes, it is
recommended that the treatment effect is given as the hazard ratio estimated by
the Cox proportional hazards model, unless the proportionality assumption is
clearly violated, where alternative approaches may be necessary.

Figure 3. Examination of proportionality assumption: log–log survival plots for the two treatment groups 

in the pancreatic cancer trial data.
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Intention-to-Treat

Analysis

Duolao Wang and Ameet Bakhai

In a clinical trial, the presentation of the results is a key 
event that can have many implications. Therefore, it is of
critical importance to know whether these results have been
generated using data from all subjects (intention-to-treat 
[ITT] analysis) or only from the subjects who adhered fully 
to their assigned treatment protocol (per-protocol analysis).
Between randomization and completion of the trial, subjects
may stop being compliant, switch treatments unexpectedly, 
or withdraw from the study. Excluding data from such subjects
(even if these data are incomplete) can result in bias. Therefore,
an ITT analysis is more informative and gives results that are
closer to those that would be seen if the treatments were given
to the population as a whole. In this chapter, we review the
advantages and limitations of an ITT strategy for compiling
clinical trial results.

■■❚❙❘ Chapter 22
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What is an intention-to-treat analysis?

An intention-to-treat (ITT) analysis is a specific strategy for generating the results 
of a randomized controlled trial. Using this method, all subjects are compared in
the treatment groups to which they were originally randomized, regardless of 
any treatment that they subsequently received [1,2]. When analyzing the results 
of a study, the ITT method accepts that some subjects might not have complied
fully with their treatment protocol, but assumes that if the subjects are
randomized adequately then noncompliant subjects will be balanced across all the
treatment groups.

An alternative method of analysis is to exclude subjects who were not fully
compliant with the study protocol. This form of analysis is known as a per-
protocol (PP) analysis, efficacy analysis, or analysis by treatment administered.
By focusing only on the fully compliant subjects, one can determine the maximal
efficacy of a treatment.

Example 1

We can illustrate these two methods of analysis (ITT and PP) through the
following study on preeclampsia. Preeclampsia is a condition of pregnancy where
women have raised blood pressure, fluid retention, and excessive protein in the
urine, and may go on to develop seizures. Since an excessive build-up of oxidative
chemicals might be responsible, a randomized trial was conducted to see whether
supplementing women at high risk with vitamins C and E (known to have
antioxidant properties) could reduce the frequency of preeclampsia [3]. This study 

Figure 1. Trial profile for the preeclampsia study described in Example 1 [3].

283 women randomized

142 assigned to placebo

61 withdrew

81 completed the study

141 assigned to vitamins C and E

62 withdrew

79 completed the study
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identified 283 women as being at increased risk and randomly assigned them to
treatment with either a combination of vitamin C (1,000 mg/day) and vitamin E
(400 IU/day) or placebo during weeks 16–22 of gestation. 

Of the 141 women randomized to vitamins C and E, 62 women withdrew from 
the study, 79 completed it, and 11 (of whom six were fully compliant) developed
preeclampsia. Among the 142 women randomized to the placebo group, 61 withdrew
from the study, 81 participated until delivery, and 24 women (of whom 21 were fully
compliant) developed preeclampsia (Figure 1).

The results, as calculated by both methods of analysis, are presented in 
Table 1. In the ITT analysis, the risk of women developing preeclampsia differed
significantly between groups, with 11 of 141 (8%) women in the vitamin group
developing preeclampsia versus 24 of 142 (17%) women in the placebo group
(odds ratio 0.42; 95% confidence interval [CI] 0.18, 0.93; P = 0.020). Using the PP
method, which considers only the women who completed the entire study, the
difference in the frequency of preeclampsia was more pronounced, with 6 of 79
(8%) women on vitamin therapy developing preeclampsia versus 21 of 81 (26%)
women on placebo (odds ratio 0.23; 95% CI 0.07, 0.66; P = 0.002). The results
from both the ITT and PP analyses suggest that supplementation with vitamins C
and E may be beneficial in the prevention of preeclampsia in women at increased
risk of the disease, with vitamins shown to be more effective by the PP analysis 
than the ITT analysis. 

What is the justification for an ITT analysis?

It might initially appear from the example that the ITT method is not optimal
since it might not capture the full potential benefit of a therapy. However, an ITT
analysis actually has several specific advantages:

Table 1. Summary and analysis of the preeclampsia treatment described in Example 1 [3].

Study groups Results

Numbers Vitamins C and E Placebo Odds ratio (95% CI); P-value

Women randomized 141 142

Women who withdrew from the study 62 61

Women developing preeclampsia 11 24 

Analysis. Percentage of women developing preeclampsia according to:

Intention-to-treat analysis 8% (11/141) 17% (24/142) 0.42 (0.18, 0.93); P = 0.020

Per-protocol analysis 8% (6/79) 26% (21/81) 0.23 (0.07, 0.66); P = 0.002
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• From a statistical point of view, an ITT analysis aims to preserve the
strengths of randomization [1,2], ie, to minimize bias. An ITT analysis
assumes that the rates of noncompliance or withdrawal are equal in both
groups. If bias is introduced into such a model, an ITT analysis is more
likely to identify this bias. For example, if a large number of subjects
withdraw from the new treatment arm compared with the standard
treatment arm, the trial will either show no difference in outcomes (since
these subjects might switch to standard treatment) or, if the withdrawing
subjects take no treatment until the end of the study, may show improved
outcomes in the standard treatment arm.

• An ITT analysis captures what happens in real-life more closely than 
the method that uses data only from subjects with perfect compliance,
making it a particularly relevant method for treatments that are difficult 
to tolerate (ie, drugs with lots of side-effects, such as chemotherapeutics).

• An ITT analysis uses the information from all the subjects in a trial at any
given time point in the study, which enables an interim analysis to be
performed, while the PP method is best applied when the study is over 
and all noncompliant patients can be identified and excluded.

• ITT analysis provides practical information on the administration of a
treatment. If, for example, subjects are allocated to a surgical treatment
for coronary artery disease instead of a less invasive percutaneous
coronary intervention and these subjects have to wait 3 months before
surgery, during which time some die, an ITT analysis would correctly
assign this mortality rate (possibly due to the delay in surgery) to the
surgical group, rather than excluding these data as a PP analysis might do.

Therefore, an ITT analysis gives a pragmatic estimate of the effect of a treatment
strategy rather than just the specific efficacy of the treatment itself, as given by the
PP method [4,5].

What are the limitations of the ITT method?

The main limitation of an ITT analysis is that it includes data from both compliant
and noncompliant subjects, and also those who might switch treatment groups
unexpectedly during the study. It does not aim to determine the maximum
potential effectiveness of a treatment as a PP method would [1,2,4,5]. Therefore,
in some studies, the ITT method might not show a statistically significant benefit,
or might show the benefit to be smaller than that generated by a PP analysis [2].
Consequently, a routine ITT analysis might find an efficacious treatment to be no
more effective than placebo.

❘❙❚■ Chapter 22 | Intention-to-Treat Analysis
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When using the ITT method, the issue of how to classify subjects who drop out of
the study – ie, stop attending for follow-up – must be dealt with before a study
starts. In the worst-case scenario, one could assume that all subjects who withdraw
count as deaths or as ‘no events’, but in reality these subjects will suffer a mixture
of events. In some studies it may be assumed that the event rate in the missing
subjects is the same as in the group of subjects with data available (a method
known as imputing event rates). This imputation method should only be used if it
proves impossible to get outcome data from a large proportion of subjects, and the
results should be presented with and without imputation.

How do the results of ITT and PP analyses compare?

When performed on data from the same study, either or both of the results from
the ITT and PP analyses might reach significance. The following are suggestions
for how these combinations of results can be interpreted:

• In most trials reaching significance – ie, where the results from an ITT
analysis support rejecting the null hypothesis (no significant difference
between treatment groups) – if the results of the PP method are slightly
more significant, this suggests that while some subjects were noncompliant,
they were equally distributed between groups. 

• If the PP results are much more significant than the ITT results, 
this might suggest a high rate of noncompliance in the study.

• If the PP results are not significant but the ITT results are significant,
there might be a confounding reason for the difference in outcomes 
other than it being due to treatment differences. For example, in a trial
comparing medicine and surgery, a significant number of subjects may 
die before having surgery. 

• If the result from an ITT analysis is not significant, while that from a
PP analysis is significant, this might be due to a considerable proportion
of subjects switching treatments (crossover) in one direction (eg, from
placebo to new treatment). 

Are there analysis strategies beyond the ITT and PP methods?

Given the limitations of an ITT analysis, occasionally we may feel that an explanatory
PP analysis is more suitable since it attempts to remove the effects of variable
compliance patterns. However, the PP method can lead to a biased comparison if
compliance itself is associated with the effectiveness of a treatment or the risk of
outcome events [4]. For example, elderly subjects are more likely to have side-effects

Clinical Trials: A Practical Guide  ■❚❙❘
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and subsequently withdraw from a study, so excluding such patients will result in 
a greater treatment effect being shown than that likely to be seen in the general
population. In both ITT and PP analyses, a judgment call may need to be made about
how to deal with subjects for whom data are incomplete, and by doing this there is 
a risk of biasing the effectiveness of a drug. Therefore, when it is inappropriate to use
either method alone, statistical methods beyond both ITT and PP can add essential
insight. This point is illustrated in the following example.

Example 2

Subjects with vitamin A deficiency are more susceptible to infections due to
impaired immunity. Therefore, a community-based randomized trial was
conducted in rural Indonesia, where infant mortality due to infections is high. 
The aim of the study was to estimate whether two high doses of vitamin A given
twice over an 8-month period would reduce mortality among preschool children.
In total, 23,682 children were randomized to vitamin A or placebo. During the
study, 20% of children in the treatment group did not receive vitamin A because
distribution to their villages was a significant problem. Figure 2 plots the trial
profile and Table 2 summarizes the results of the trial and analyses.

On completion of the study, there were 46 deaths out of the 12,094 children
(0.38%) who were randomized to vitamin A supplementation, and 74 out of
11,588 (0.64%) in the no-supplementation group. Using an ITT analysis, the odds
ratio for death was estimated to be 0.59 (95% CI 0.40, 0.87; P = 0.005), suggesting
a 41% lower rate of death in the group who were supposed to receive vitamin A.
The PP analysis calculated an odds ratio of 0.19 (95% CI 0.10, 0.36; P = 0.001),

Figure 2. Trial profile for the vitamin A supplementation trial described in Example 2 [5].

225 villages randomized

11,588 children 
assigned to placebo

74 children died

12,094 children 
assigned to vitamin A

9,675 children 
compliant

2,419 children
noncompliant

12 children died 34 children died
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suggesting an 81% reduction in mortality in children who actually received
vitamin A as part of the supplementation program.

The information on compliance in Table 2 shows that, of the 2,419 children in the
supplementation group who did not receive vitamin A, 34 (1.41%) died. This rate
was twice that of the no-supplementation group (0.64%), despite theoretically
having similar treatments (no supplementation). The reason for this was that the
same issues responsible for noncompliance – transportation and distribution
difficulties – were also responsible for other healthcare deficiencies in the same
villages, leading to a higher rate of infant mortality. In the trial, mortality was
associated with the bias of whether the child came from a village that could or
could not receive delivery of vitamin A. In this situation, comparing only the
compliant children (PP analysis) would overestimate the efficacy.

To achieve an unbiased result, the risk of mortality among compliant children in
the supplementation group should be compared with the risk of mortality of a
comparable subgroup in the no-supplementation group. This comparison would
be more appropriate if it can be assumed that randomization led to an equal
proportion of noncompliant children in both groups. For further results and an
explanation of the methodology used to analyze the data in Table 2, see [5].

Table 2. Summary and analysis of the vitamin A trial described in Example 2 [5].

Study groups Results

Numbers Vitamins A Placebo Odds ratio (95% CI); P-value

Children randomized 12,094 11,588

Compliant subjects 9,675

Noncompliant subjects 2,419

Deaths among randomized subjects 46 74

Deaths among compliant subjects 12

Deaths among noncompliant subjects 34

Analysis

Mortality rates in:

Randomized subjects 0.38% 0.64%

Compliant subjects 0.12%

Noncompliant subjects 1.41%

Mortality rates according to:

Intention-to-treat analysis 0.38% (46/12,094) 0.64% (74/11,588) 0.59 (0.40, 0.87); P = 0.005

Per-protocol analysis 0.12% (12/9,675) 0.64% (74/11,588) 0.19 (0.10, 0.36); P = 0.001
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How should the ITT strategy be implemented in clinical trials?

An ITT strategy should be considered to be both a method of analysis and a way
of conducting an entire research study, including trial design [6,7]. When designing
a trial, it should be specified whether the study aim is pragmatic (to determine 
the practical impact of a treatment strategy in a trial setting) or explanatory 
(using a trial to determine the maximal effectiveness of a treatment strategy). 
For pragmatic trials the ITT method is optimal, while for an explanatory trial 
a combination of PP and ITT methods will provide insights. The distinction
between these methods is relevant only when a significant number of subjects
withdraw, have missing data, or are noncompliant. If these aspects are minimal
then the results of both the ITT and PP analyses are likely to be similar. 

In addition, more complex statistical methods beyond ITT can be explored to take
into account the issue of noncompliers or crossovers. It might also be possible to
determine factors that influence compliance, such as genetics. For example,
tamoxifen – a treatment for breast cancer – is targeted at subjects in whom a
particular type of receptor is present, and some asthma therapies work better in
subjects who are also susceptible to hay fever. 

What considerations are there when reporting trial results?

When reporting a trial, it should be stated that an ITT strategy has been used to
conduct the trial and compile the results. The handling of missing values,
noncompliant subjects, and those deviating from the treatment allocated to them
at randomization should be clearly described. Lastly, while the main conclusions
of the study should be drawn from the results of the ITT analysis, supplemental
results using other strategies, such as the PP method, can be shown in addition.

Conclusion

The ITT approach is used to provide an unbiased assessment of a treatment
strategy and is usually the optimal method for analyzing the results of a trial. 
In essence, the ITT method provides the basis for designing, conducting, and
reporting an entire clinical trial and comparing treatment strategies. It accounts
for treatment effects, difficulties in administering the drug,  and compliance
issues. Meanwhile, a PP analysis evaluates the maximum benefit possible from a
treatment, given perfect compliance. When noncompliance is considerable, the
results of both ITT and PP analyses might be unreliable and other statistical
methods should be explored.
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Subgroup Analysis

Ameet Bakhai, Zoe Fox, and Duolao Wang

■■❚❙❘ Chapter 23

Subgroup analyses in a clinical trial explore whether there is 
a relationship between the specific characteristics of subjects
and their responses to treatments. Although subgroup analyses
are reported in most clinical trials, considerable controversy
exists about the best means of performing these investigations.
Statisticians are wary of performing multiple subgroup analyses –
‘data dredging’ – since this increases the risk of finding a false-
positive result (a Type I error). Meanwhile, clinicians try to justify
‘torturing the data’ with the notion that such analyses might
identify the patients who benefit the most from specific treatment
strategies. In this chapter, we discuss appropriate uses and
common abuses of subgroup analyses, and how to interpret 
the results generated by them.
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What is a subgroup analysis?

A clinical study is usually concerned with the overall impact of a treatment on an
entire trial population. However, individuals within this population can differ in
many ways with respect to their age, gender, other medical problems, and risk 
of side-effects. These factors can influence their response to treatments. By
understanding the relationship between these characteristics and the treatment
effect, clinicians can make more accurate treatment decisions for specific patients
using knowledge gained through subgroup analyses.

Subgroups can be identified on the basis of patients having specific features not
shared by the whole trial population. These features might be patient characteristics
(eg, male gender or age >75 years), risk factors (eg, high blood pressure for heart
disease, asbestos exposure for lung cancer), specific procedures (eg, keyhole surgery
rather than a traditional procedure) or specific tests (eg, a new assay test to
measure amylase). Subgroups can also be defined by the level of compliance in the
trial (eg, fully compliant) or by the occurrence of a specific outcome (eg, the
occurrence of a stroke or survival to 5 years).

Example 1

For example, in a trial of adjuvant chemotherapy for breast cancer, survival was
assessed according to nodal status (two categories) and by age group (two
categories). Ascertaining survival according to these subgroups provided four
survival curves and, consequently, better estimates of survival for individual
patients [1]. Using these data, physicians and patients were able to have a more
informed discussion about whether chemotherapy would be likely to have benefits
or disadvantages in their specific situation.

What is an appropriate subgroup?

An appropriate subgroup consists of subjects with one or more characteristics that
have rational relationships to the disease or treatment. For example, consider a
trial where patients are being prescribed a novel beta-blocker to reduce high
blood pressure. Within this population, examining the treatment effect in
subgroups of patients with and without heart failure or minor cardiac rhythm
disturbances would be appropriate. Raised blood pressure can lead to heart
failure and may therefore be associated with a greater benefit from beta-blockers.
However, beta-blockers also reduce the rate at which the heart contracts and may
make some patients with slow heart rhythm disturbances worse, thereby
decreasing the treatment effect. It would be rational to examine both of these
example subgroups in the above trial. Subgroups of subjects recruited on a
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Wednesday or born only in the year 1940 are much less likely to have a rational
biological association with a disease process, and so would usually form
inappropriate subgroups.

What are the uses of subgroup analyses?

Subgroup analyses are used in many ways. The most common applications are:

• to examine whether the treatment effect or side-effects of treatments 
are the same or greater in patients with a specific feature or risk factor 
so that more specific treatment decisions can be made

• to generate hypotheses for future studies such as novel associations 
(eg, patients with asthma and rheumatoid arthritis had more joint 
pains in a trial of patients using a new formulation of salbutamol; 
might rheumatoid arthritis and asthma therapies be linked?)

• in rare situations, to review whether the randomization process worked
evenly (eg, in a large multinational trial, were the 100 patients from
country X equally distributed to new and control treatments? If not, 
did the imbalance change the size of the treatment effect for that 
country’s patients?)

What are the problems with subgroup analyses?

A number of pitfalls of subgroup analyses are listed in Table 1. The immediate
problem with subgroup analyses is that the individual subgroups of interest are
usually small compared with the trial population, which can therefore reduce the
statistical power for determining an estimate of the true treatment effect within
the subgroup. Although the beneficial effect of the treatment might increase if the
treatment is restricted to subjects at higher risk of trial endpoints, the confidence
interval for the size of the true treatment effect will widen [2].

Table 1. Potential pitfalls of subgroup analyses.

Clinical Trials: A Practical Guide  ■❚❙❘
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• Over-interpreting positive results as evidence of cause and effect 

• Not supporting the results of subgroup analyses with a strong biological rationale

• Not increasing the significance threshold for multiple analyses

• Having an inadequate number of subjects in the subgroups to be able to give a good estimate of the treatment effect

• Selecting subgroups post hoc, which can be biased by the treatment effect itself

• Not considering supporting evidence from other studies
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Secondly, when many subgroup analyses are undertaken in a clinical trial, the
chance of finding a false-positive result (Type I error) by random chance alone
increases if the significance level or threshold is kept the same (traditionally a 
P-value of 0.05; ie, a 1 in 20 chance). Table 2 shows results from a model using
treatments of equal efficacy. As the number of subgroup analyses increases, 
so does the probability of finding at least one result meeting the 5% threshold,
even though the treatments are of equal effect. For five subgroup analyses, the
overall chance of a Type I error inflates to 22.62% instead of the expected 5%. 
In other words, the odds of at least one false-positive result increases from 1 in 20
to about 1 in 5, using a 0.05 level. Chapter 9 contains more on sample size and power.

This method of multiple subgroup analyses has been termed ‘torturing the data
until it confesses to something’, ‘a fishing expedition’ or ‘data dredging’ [3,4].

Example 2

A classic demonstration of a ‘fishing expedition’ was published by Yusuf and
colleagues, who looked at the results of the ISIS-2 (Second International Study of
Infarct Survival) trial [5,6]. The aim of this study was to determine whether the use
of aspirin for patients after a heart attack was associated with a reduction in the
risk of further heart attacks. While the overall study results found that aspirin
reduced the risk of further heart attacks by 50%, which was a highly significant
observation (P < 0.0001), one subgroup analysis showed that aspirin was beneficial
for all astrological signs except Gemini and Libra. Such an association with birth
signs is likely to have arisen due to chance rather than have a plausible pathological
association with the risk of heart disease.

Patient imbalance

A further problem for subgroup analyses is that the balance created by
randomization might not be maintained in smaller subgroups. For example, 
while in the overall study men and women might be equally balanced by design, 
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Table 2. The effect of multiple statistical tests on the overall Type I error rate.

Number of tests with a 5% significance level Overall chance of a Type I error (%)

1 5.00

2 9.75

3 14.26

4 18.55

5 22.62

10 40.13

20 64.15
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in a small subgroup of patients >80 years of age, there might be more women
since women generally live longer than men. The way to avoid both these
limitations is for investigators to calculate an appropriate sample size for the study
with well-informed predictions of the likely size of the subgroups in mind.

Are there solutions to deal with the problems 

of subgroup analyses?

A number of solutions have been devised to overcome the problems stated above.

1. Adjusting the threshold of significance for subgroup analyses

One option would be to adjust the significance level (usually a 1 in 20 chance,
or P < 0.05) by the number of planned comparisons. For example, if the 
overall treatment effect was significant at the 5% level and the aim was to
investigate the subgroup effect over 20 categories (such as by study sites), then
one could divide the original significance level (0.05) by the total number of
categories, meaning that a P-value of < 0.0025 is required to declare significance
for any one subgroup analysis. This significance adjustment is sometimes called
a Bonferroni correction.

2. Using an interaction test

In addition to adjusting the significance level, a subgroup analysis should be
supported by some sort of interaction test to see whether the association between
the treatment effect and the specific characteristic of the subset is significant. 
For example, let us say that a traditional subgroup analysis found a higher
treatment effect in women. We could then ask the question: “Was the treatment
effect seen in women significantly different from that seen in men?” If so, this
implies that female gender influences treatment response. 

In a study of 35 trials where subgroup analyses were performed, only 15 trials used
such statistical tests of interaction to confirm the subgroup effect [7]. The limitation
of interaction tests, as with other tests, is that with smaller populations to compare
they have less statistical power either to capture or to rule out an association.

3. Avoiding bias arising from post hoc analysis

Subgroup analyses are often defined after a study is complete; therefore, they are
not prespecified or predefined. The method is termed retrospective or ‘post hoc’
analysis. Such an analysis should be used mainly to form ideas or propose
associations – ie, hypothesis generating – but a large number of researchers use
the results of such analyses to support conclusions or explain results, leading to
over-interpretation of the positive result. The reason that this may not be a valid
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strategy is that the treatment itself can influence how the subgroup is formed. 
An example of this effect is given below.

Example 3

Consider a study that shows a new treatment to be beneficial overall, and that the
results are even stronger in younger patients. The trial coordinators state that the
treatments work even more effectively in younger patients. However, the reason
that these results may occur is because older patients may not be able to tolerate
the side-effects of the drug and therefore might withdraw early from the study,
making it appear that the benefits are greater in young patients. The statement
that the treatment is not beneficial in older patients may also be made. In truth,
the effect is not dependent on age but rather the ability of patients to tolerate
side-effects. Therefore, neither statement about the young or old subgroups is
entirely correct. If we had predefined that we would review the effect of
treatments in older and younger patients, we would have aimed to balance the
groups during recruitment and would soon have spotted that the groups do not
remain balanced after randomization. We would, therefore, have seen the effect
of drug side-effects on compliance from older patients.

4. Reviewing existing data to seek support for the subgroup results

More credibility is given to subgroup analysis results if they are supported by
similar results from previous independent trials or systematic reviews such as 
meta-analyses (see Chapter 38).

What factors should be considered when planning 

a subgroup analysis?

If the primary outcome of the trial is related to factors other than the treatment
strategies, such as age and gender, then these and other subgroups of interest
from previous studies should be prespecified in the protocol with some biological
rationale to support their choice. Stratifying randomization and analysis will help
reduce imbalance between the subgroups, thereby improving the accuracy of
subsequent observations. However, if the size of the study is fixed, it might only be
possible to stratify randomization by a small number of characteristics, which
limits the number of subgroups that can be predefined. The analysis should
examine the relationship between the primary outcome and only these few
prespecified subgroups. Subgroup analyses with outcomes occurring with a high
frequency in the study will also be more reliable than those investigating 
rare events.
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Conclusion

Clinical trials are conducted to identify whether the use of a specific treatment
would be beneficial for populations of patients with a specific disease. In addition,
it is important to consider how, within this group, patients with specific
characteristics will respond to the treatment. Subgroup analyses allow us to
explore the relationship of characteristics to treatment effect. There are, however,
a variety of pitfalls and limitations with such analyses, and their results should not
be over-interpreted, particularly without rational biological explanations.
Interaction tests should also be performed, rather than simple comparisons alone.
With these reservations, well-conducted and predefined analyses provide insights
to allow better-informed treatment decisions for individual patients.
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Regression Analysis

Fiona Steele and Duolao Wang

Most medical events have multiple causes, and these causes
are often related. Multiple regression analysis is a statistical tool
that has become increasingly important for medical research. 
It is used to determine the relationship between a single event
or outcome and its different causes. These causes can then 
be established as risk factors for the occurrence of events or
protective factors for the prevention of events. In this chapter,
we introduce three commonly used types of regression analysis –
linear, logistic, and hazards regression – and focus on practical
issues, such as when to apply each method and how to interpret
the results.

■■❚❙❘ Chapter 24

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 273



❘❙❚■ Chapter 24 | Regression Analysis

274

Introduction

The purpose of a clinical trial analysis is to obtain an accurate estimate of any
treatment effect. This is often measured as the difference between treatment
groups in the primary outcome, based on the assumption of perfect balance
among baseline characteristics. If important imbalances are found among some
variables, covariate (or a variable related to the outcome) adjustment analysis is
sometimes employed to estimate adjusted treatment effects with an aim to take
imbalances into account. Furthermore, we might want to assess the associations
between patient characteristics measured at baseline (before randomization) and
the primary outcome measured during the follow-up. By doing this, we can
identify factors that have increased or decreased the likelihood of events occurring.
These tasks can often be achieved with multiple regression methods.

In statistical terminology, the outcome variable in regression analysis is often
called the dependent or response variable, and the baseline characteristics of patients
are referred to as independent, explanatory, or predictor variables or covariates.
The most simple form of regression analysis, looking at the relationship between
one outcome variable and only one predictor variable, is called a univariate
analysis (or more accurately bivariate analysis).

Suppose that we are interested in estimating the effect of smoking behavior 
(the predictor) on the occurrence of death among patients with heart failure. 
We know that, in reality, a number of other variables are potential predictors of
death. Even if we are interested only in the effect of smoking behavior, we need
to control for the effects of variables such as age, gender, body mass index, cardiac
function, systolic blood pressure (SBP), and history of previous heart failure or
heart attacks. These variables are associated not only with the risk of death, 
but also with smoking behavior.

In order to assess the contribution of smoking status to risk of death, we could
simply do a univariate analysis and look at the rates of death in smokers and
nonsmokers. This would be crude and would not allow us to determine what the
exact contribution of smoking was. To answer this more complex question we must
compare like with like, ie, control for differences in the characteristics of smokers
and nonsmokers that might be related to death. For example, if death rates are
higher among obese patients and this group also has a higher proportion of
smokers than other groups, a simple comparison of smokers and nonsmokers
across all weight groups would distort the true effect of smoking.

One approach to the problem would be to split the sample into different weight
groups (eg, lean, normal, obese) and to compare smokers and nonsmokers 
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within each. In practice, however, there will be many control variables and
repeatedly splitting the sample can lead to a large number of small subgroups. 
A more efficient method is to perform a multivariate (multiple) regression
analysis. This assesses the effect of smoking status on the risk of death, while
simultaneously taking into account the influence of the other variables chosen to
be in the analysis.

Classification of regression methods

Regression methods can be classified according to the measurement of the response
variable. While several methods exist, the three usual methods used are as follows:

• If the response is continuous (eg, blood pressure, or total cholesterol level) 
then linear regression can be used. 

• If the response is binary (eg, whether or not an individual has been
diagnosed with lung cancer) then logistic regression is applied.

• If the response is time to the occurrence of an event (eg, the time 
from randomization to patient death in a cancer trial) then hazards
regression is an appropriate method. 

All regression models can handle both continuous and categorical 
predictor variables.

Multiple linear regression

The first step of any regression analysis is to examine the distribution of each
variable and the bivariate distributions of each pair of variables, particularly the
response (or outcome) variable paired with each of the predictors. If the response
is a continuous variable with a symmetrical (normal) distribution, multiple linear
regression can be used. However, a response with a skewed distribution might first
need to be transformed. For example, a log transformation can remove a positive
skew. Scatterplots of the response variable versus continuous predictors should be
inspected to check that the relationship is linear; a non-linear relationship can be
handled by fitting a curve rather than a line, or by categorizing the predictor.
Graphical checks of the data can also reveal unusual observations or outliers,
which should be investigated further before being retained in the analysis.

Let y
i
denote the value of individual i on the continuous outcome variable, where

i indexes the individuals in the sample (i = 1, 2, …, n). Suppose that there are 
p predictor variables, which we denote by x

1
, x

2
, …, x

p
(they can be continuous,
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binary, or categorical). Again, we use an i subscript to denote the value taken 
by the ith individual on each variable. The multiple linear regression model can 
be written:

y
i
= a + b

1
x

1i
+ b

2
x

2i 
+ ... + b

p
x

pi 
+ e

i
(1)

where e
i
is called a residual, and represents variables other than the p predictors

that affect y. Various assumptions are made about the residuals, namely that they
follow a normal distribution and have constant variance across different values of
the predictor variables (the assumption of homoskedasticity). The adequacy of these
assumptions should be checked by examining plots of the estimated residuals.

a is called the intercept and is interpreted as the mean of y when all the xs 
equal 0. Of more interest are the bs, referred to as the regression coefficients; 
b

k
(k = 1, 2, …, p). Regression coefficients are interpreted as either the 

predicted change in y for a one unit increase in x
k

if it is a continuous variable, 
or the difference between two groups if it is a binary variable, adjusting for the
effects of the other predictor variables in the model. P-values and confidence
intervals (CIs) can be obtained for each regression coefficient to assess whether
the associated predictors have statistically significant effects on the response.

Example

To illustrate the use of multiple linear regression, let us consider a randomized
controlled trial on 220 depressed residents aged ≥65 without severe cognitive
impairment, conducted by Llewellyn-Jones et al [1]. The primary endpoint
(response variable) was the geriatric depression scale score at follow-up: a higher
depression score meant more depression features. They used multiple linear
regression analysis to evaluate the effect of intervention on the depression scale
score at follow-up, while controlling for the other independent variables
measured. Table 1 presents the estimates of the regression coefficients, their 
95% CIs, and associated P-values for the intervention variable and some
significant predictors from this study.  Multiple linear regression analysis found 
a significant intervention effect after controlling for possible confounders, with
the intervention group showing an average improvement of 1.87 points on the
geriatric depression scale compared with the control group (95% CI 0.76, 2.97; 
P = 0.0011). The regression coefficients also tell us that geriatric depression scale
score at follow-up increases by 0.73 points for every geriatric depression scale
score at baseline, by 0.55 points for neuroticism score, and 0.10 points for every
year of age, but decreases by 0.54 points for every score of basic functional ability
at baseline.
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Logistic regression

Logistic regression is used when the response variable, y, is binary, ie, a variable
that takes the value 0 or 1. For example, if death is the endpoint of a study, then
y = 1 if the patient dies and y = 0 if the patient is alive at the end of the study.
There are two main problems with applying a multiple linear regression model to
binary responses. Firstly, the normality assumption does not hold (binary variables
follow a Bernoulli distribution). Secondly, the model might give meaningless
predictions. A fitted regression equation can be used to predict the mean response
for given values of the predictor variables, which for a binary response is equal to
the probability that y = 1. Although probabilities must theoretically lie between 
0 and 1, a multiple regression model can yield predicted probabilities that are
outside this range.

The probability that individual i has a response of 1 is denoted by p
i
. In logistic

regression, we replace the left-hand side of the multiple linear regression model (1)
with a transformation of the odds that y

i
= 1, leading to the following model:

log
p

i = a + b
1
x

1i
+ b

2
x

2i 
+ ... + b

p
x

pi          
(2)

1 – p
i

where p
i

/ (1 – p
i
) is the odds that the response variable takes the value of 1. 

The right-hand side of a logistic regression model in (2) is a linear function of the
predictor variables, as in the multiple linear regression model. The coefficient b

k

of x
k

is interpreted as the predicted change in the log odds for a one unit increase
in x

k
, if x

k
is a continuous variable.
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Table 1. Factors affecting geriatric depression scale score at follow-up, determined by multiple linear

regression analysis: extracted results from [1].

aNeuroticism scored 0–8: higher score indicates higher neuroticism.  
bMeasure of basic functional ability, for example, to dress or feed oneself independently (scored 0–8: higher score

indicates higher independence).

Variable Regression coefficient (95% CI) P-value

Intervention group vs control –1.87 (–2.97, –0.76) 0.0011

Baseline geriatric depression scale score 0.73 (0.56, 0.91) <0.0001

Neuroticism scorea 0.55 (0.20, 0.90) 0.0021

Physical maintenance scale scoreb –0.54 (–0.99, –0.09) 0.0202

Age (years) 0.10 (0.00, 0.19) 0.0395

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 277



❘❙❚■ Chapter 24 | Regression Analysis

278

The magnitude of an effect on the log odds scale is difficult to interpret, but if we
take the exponential (anti-log) of b

k
then we obtain something more meaningful;

ebk is interpreted as the multiplicative effect of a one-unit increase in x
k

on the
odds. The quantity  is called an odds ratio because it compares the odds of having
a response of 1 for individuals with values of x

k
that are one unit apart. If x

k
is

binary, ebk compares the odds that y = 1 for individuals with x
k
= 1, relative to those

with x
k

= 0.

Example

We can illustrate the use of logistic regression in medical research with an
example from the GRACE (Global Registry of Acute Coronary Events) study [2].
This study assessed current practices in relation to reperfusion therapy of 
ST-segment elevation myocardial infarction (MI) from data collected in a
multinational, prospective registration study. One purpose of this study was to
assess the characteristics that would identify patients who did not receive
reperfusion therapy. The response variable was a binary indicator of not receiving
reperfusion therapy (coded 1 if not given reperfusion therapy and 0 otherwise).
The predictors included age, gender, history of diabetes, history of congestive
heart failure, previous coronary bypass surgery, history of MI, presentation
without chest pain, teaching status of the admitting hospital, presence of a
catheterization laboratory on site, and geographic region.

Table 2 shows the odds ratios of not receiving reperfusion therapy. These values
were obtained from a model where only statistically significant effects (at the 1%
level) were retained. Also shown are 95% CIs for the odds ratios and P-values. 
All effects are significant at the 5% level, as indicated by both the P-values and the
fact that none of the 95% CIs contain 1 (the value of the odds ratio if a predictor
has no effect). The results show that patients aged ≥75 years, patients presenting

Table 2. Results from a logistic regression analysis of a lack of reperfusion therapy in patients with ST-segment

elevation myocardial infarction [2].

Predictor Odds ratio (95% CI) P-value

Age ≥75 years vs <75 years 2.63 (2.04, 3.38) <0.0001

Female vs male 1.52 (1.21, 1.91) 0.0003

Presented without chest pain vs with chest pain 3.57 (2.42, 5.28) <0.0001

Diabetes mellitus vs none 1.55 (1.19, 2.00) 0.001

Previous congestive heart failure vs none 3.88 (2.53, 5.96) <0.0001

Previous myocardial infarction vs none 2.11 (1.63, 2.72) <0.0001

Previous coronary artery bypass grafting vs none 2.38 (1.47, 3.87) 0.0004
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without chest pain but with another symptom such as dyspnea, patients with
diabetes, patients with a history of congestive heart failure or MI, and patients
who had previously undergone coronary bypass surgery had higher odds of not
receiving reperfusion therapy, and were therefore less likely to receive reperfusion
therapy than their counterparts. For example, the odds for a patient aged 
≥75 years is 2.63 times that for a patient <75 years, of not having therapy.

Hazards regression

Hazards regression is used when the response variable is the time until the
occurrence of an event. Such responses are commonly called survival times, which
is particularly appropriate in medical research where the event of concern is often
death. A special feature of survival data is that there are usually some individuals
in the sample who have not experienced the event by the end of the study period,
but who may do so in the future. For these individuals, survival times are
incompletely observed or ‘right censored’. Since excluding censored cases will lead
to bias, hazards regression has been developed to allow censored survival times to
be included in the analysis.

The left-hand side of a hazards regression model is a transformation, usually 
the logarithm, of the hazard function. The hazard, denoted as h(t), is the
instantaneous risk of having the event at time t, given that the event did not occur
before time t. A useful quantity that can be derived from the hazard is the survivor
function, which is the probability of having the event after time t, ie, ‘surviving’
beyond time t. As in the multiple linear and logistic regression models, the right-
hand side of a hazards model is a linear function of the predictor variables:

h
i
(t) = h

0
(t)exp(b

1
x

1i
+ b

2
x

2i
+ … + b

p
x

pi
)

or

log(h
i
[t]) = log(h

0
[t]) + b

1
x

1i
+ b

2
x

2i
+ … + b

p
x

pi
(3)

where h
0
(t) is the hazard function for an individual whose covariates (x

k
, k = 1, 2,

..., p) all have values of 0.

Different specifications of this function in equation (3) lead to different hazards
regression models. For example, if h

0
(t) is assumed to be constant over time, this

leads to an exponential hazards regression model. The most commonly used
hazards model is the Cox proportional hazards model, where h

0
(t) is unspecified.
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In a hazards model, the coefficient of a continuous predictor variable represents
the additive effect of a one-unit change in that variable on the log hazard. It is
more usual, however, to present the exponential of the coefficients, which are
interpreted as the multiplicative effects of predictors on the hazard. The
exponentiated coefficients are called hazards ratios or relative risks.

Example

The PRAIS-UK (Prospective Registry of Acute Ischaemic Syndromes in the UK)
long-term follow-up study was a registry study identifying risk factors following
hospital admission in patients with non-ST-elevation acute coronary syndrome [3].
A cohort of 653 patients was followed for mortality over 4 years. A Cox
proportional hazards model was used to identify the prognostic factors, and the
results are presented in Table 3.

Table 3. Hazard ratios and 95% confidence intervals (CIs) for the effects of baseline characteristics on

mortality in the long-term PRAIS (Prospective Registry of Acute Ischaemic Syndromes in the UK) follow-up

study (653 patients): Cox regression analysis [3].

aOther changes include T-wave inversion, Q-waves, and other ST- and T-wave changes. 

BBB = bundle branch block; CABG = coronary artery bypass graft; ECG = electrocardiogram; MI = myocardial infarction;

PCI = percutaneous coronary intervention; SBP = systolic blood pressure.

Variable Hazard ratio 95% CI P-value

Age

<60 years 1.00

60–70 years 2.29 1.18, 4.44 0.014

>70 years 4.88 2.62, 9.06 <0.001

ECG changes

Normal 1.00

ST-depression or BBB 3.44 1.62, 7.29 <0.001

Other changesa 1.94 0.92, 4.07 0.081

Male vs female 1.78 1.22, 2.59 0.003

Smoker vs nonsmoker 1.18 0.74, 1.87 0.480

Diabetes vs none 1.01 0.64, 1.58 0.977

SBP (per 10 mm Hg increase) 0.94 0.88, 1.00 0.048

Heart rate (per 5 bpm increase) 1.06 1.01, 1.10 0.008

Prior heart failure vs none 2.41 1.60, 3.63 <0.001

Prior MI vs none 1.41 0.95, 2.08 0.088

Prior angina vs none 0.83 0.52, 1.33 0.444

Prior PCI/stent or CABG vs none 0.69 0.43, 1.11 0.123

Prior stroke vs none 2.39 1.44, 3.97 <0.001

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 280



Clinical Trials: A Practical Guide  ■❚❙❘

281

Age, gender, SBP, heart rate, prior heart failure, prior stroke, and ECG changes
were found to be significantly associated with the hazard (risk) of death in the
long-term follow-up period. For example, the risk of death for a patient with prior
heart failure was 2.41 times that for a patient without a history of heart failure; the
95% CI for this relative risk was 1.60, 3.63. Males had a risk of 1.78 (95% CI 1.22,
2.59; P = 0.003) compared with females. 

Age was treated as a categorical variable in the analysis with three categories:
<60, 60–70, and >70 years. For a categorical variable, one category must be
chosen as the reference, while the other categories are compared with this group
in the multivariate analysis. The choice of reference category in a study is usually
based on the main hypothesis being tested. For example, in the PRAIS-UK
analysis, it was expected that the youngest age group would have the lowest risk of
death, so that was chosen as the reference group.

The interpretation of results for a categorical variable is similar to that for a binary
variable. Taking the age effect as an example, the results in Table 3 suggest that,
compared with patients aged <60 years, the relative risk of death for patients 
aged 60–70 years and >70 years is 2.29 (95% CI 1.18, 4.44; P < 0.014) and 4.88
(95% CI 2.62, 9.06; P < 0.001), respectively. SBP is a continuous variable
measured in units of 10 mm Hg, so the hazard ratio of 0.94 means that for every
10 mm Hg increase, the risk of death is multiplied by 0.94. In other words, the risk
is decreased by 6% ([1 – 0.94] × 100).

Five most common uses of regression models 

in clinical research

Multiple regression models have a variety of uses in clinical research. The five
most common uses are to:

• adjust for differences in baseline characteristics
• identify the predictors of an outcome variable
• identify prognostic factors while controlling for potential confounders
• determine prognosis (prognostic models)
• determine diagnosis (diagnostic models)

These five uses are related, and many studies will use multiple regression for
several or all of these purposes. We discuss them separately below.

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 281



❘❙❚■ Chapter 24 | Regression Analysis

282

1. Adjusting for differences in baseline characteristics

In a randomized clinical trial, if the randomization has created perfectly identical
groups then the treatment groups will be equal in terms of both known and
unknown factors. If this is the case then any association between baseline
characteristics and the treatment will be balanced, and thus no confounding effect
will need be adjusted for. A simple unadjusted test to estimate the treatment
effect can then be used. However, despite randomization, treatment groups can
sometimes be different with respect to some variables that are associated with the
outcome variable and treatment. Under such circumstances, adjusted analysis for
the baseline differences in these variables may become necessary (see Chapter 25
for more about covariate adjustment analysis).

2. Identifying the predictors of an outcome variable

This is the most popular use of regression analysis in clinical research. Using
multiple regression analysis, we can describe the extent, direction, and strength of
the relationship between several independent variables and a dependent variable.
The two examples used in the previous sections fall largely into this category [2, 3].
The sign of b

k
indicates the direction of the effect of predictor x

k 
on the outcome

statistic being modeled (the mean value of the outcome variable if the outcome is
a continuous variable; the log of the odds of the outcome if the outcome is a
binary variable; the log of the hazard of the outcome if the outcome is a time to
event), whereas the value of b

k
(or ebk) measures the magnitude of its effect.

The CI for b
k

(or ebk) gives a range for the true population value, and the P-value 
is a measure of the strength of evidence for the effect. In the case of a linear
regression analysis, a positive b

k
implies a positive (or increasing) relationship

between x
k

and the continuous outcome variable, while negative values would
suggest a protective effect of the baseline and outcome variable. For logistic and
hazards regression, ebk < 1 (ebk > 1) suggests that increasing x

k
is associated with

decreasing (increasing) the odds or hazard of having an outcome.

3. Identifying prognostic factors while controlling for 

potential confounders

With advances in medical research, we have learned more about the multifactorial
nature of many diseases. In the case of, eg, coronary artery disease (CAD), many
risk factors have been identified through epidemiological studies and clinical trials,
such as smoking, high blood pressure, and high cholesterol. If we want to assess the
effect of a new study variable on the occurrence of CAD, we need to adjust the
analysis for risk factors that are already established as predictors of the disease.

Wei et al. conducted prospective cohort studies among 40,069 men and women to
investigate the association between fasting plasma glucose levels, cardiovascular
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disease, and all-cause mortality using a Cox proportional hazards model [4]. 
After multivariate adjustment for age, gender, study population, ethnicity, 
current smoking status, high blood pressure, total cholesterol, BMI, triglycerides,
history of cardiovascular disease and cancer, and a family history of premature
cardiovascular disease, patients with fasting plasma glucose <70 mg/dL 
(<3.89 mmol/L) and those with fasting plasma glucose 70–79 mg/dL 
(3.89–4.43 mmol/L) had a 3.3-fold and 2.4-fold increased risk of cardiovascular
disease mortality, respectively, compared with the risk in patients with fasting
plasma glucose 80–109 mg/dL (4.44–6.05 mmol/L). Participants with low fasting
plasma glucose levels also had an increased risk of all-cause mortality. They
concluded that participants with low fasting plasma glucose levels had a high risk
of cardiovascular disease and all-cause mortality.

4. Establishing prognostic models

A multiple regression model can be used to establish a prognostic model,
providing information on the prognosis of a patient with a particular set of known
prognostic factors.

For example, Pocock et al. developed a prognostic model for estimating the 5-year
risk of death from cardiovascular disease based on data from eight randomized
trials [5]. Baseline factors were related to the risk of death from cardiovascular
disease using a multivariate Cox model, adjusting for trial and treatment group
(active treatment versus control). A risk score was developed from 11 factors:
age, gender, SBP, serum total cholesterol concentration, height, serum creatinine
concentration, cigarette smoking, diabetes, left-ventricular hypertrophy, history of
stroke, and history of a previous heart attack. Their risk score was an integer, with
points added for each factor according to its association with risk.

The 5-year risk of death from cardiovascular disease for scores of 10, 20, 30, 40, 50,
and 60 was 0.1%, 0.3%, 0.8%, 2.3%, 6.1%, and 15.6%, respectively. For example, 
a score of 10 points (typical for a woman aged 35–39 years) had a 5-year risk of 
0.1%; a score of 25 (typical for men aged 35–39 years), 0.5%. A score of 65 indicated
a 25% risk, achieved in a few elderly men only. This prognostic model illustrates how
different survival can be with the same disease but different patient characteristics.

5. Determining diagnostic models

Multiple regression models are sometimes used to determine diagnostic models,
which identify the best combination of diagnostic information to determine
whether a person has a particular disease. For example, Budoff et al. developed 
a model incorporating electron-beam tomography-derived calcium scores in a
model for the prediction of angiographically significant CAD [6]. They examined
1,851 patients with suspected CAD who underwent coronary angiography for
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clinical indications and performed an electron-beam tomographic scan in all
patients. Total per-patient calcium scores and separate scores for the major
coronary arteries were added to logistic regression models to calculate a
probability of CAD, adjusting for age and gender. The ability of coronary calcium
to predict obstructive disease on angiography had an overall sensitivity of 95%
and specificity of 66%.

With calcium scores >20, >80, and >100, the sensitivity to predict stenosis
decreased to 90%, 79%, and 76%, whereas the specificity increased to 58%, 72%,
and 75%, respectively. The logistic regression model exhibited excellent
discrimination (receiver operating characteristic curve area, 0.842 ± 0.023) and
calibration. The study concluded that electron-beam tomographic calcium-
scanning provides incremental and independent power in predicting the severity
and extent of angiographically significant CAD in symptomatic patients.

Table 4. Assumptions and interpretations of multiple regression models. 

Description Linear regression Logistic regression Hazards regression

Outcome variable

Type Continuous Binary Time to event

Distribution Normal Bernoulli Depends on the model

Censored Not allowed Not allowed Allowed

Statistic being modeled The mean value of The log of the odds The log of the hazard
the outcome variable of the outcome of the outcome

Predictor variables

Continuous (x
k
) b

k
is the change in b

k
is the change in b

k
is the change in

the mean value of the the log odds of the the log hazard of the
outcome associated with  outcome associated with outcome associated with 
a one-unit change in x

k
a one-unit change in x

k
a one-unit change in x

k

Binary (x
k
) b

k
is the difference in the b

k
is the difference in the b

k
is the difference in the

mean value of the outcome log odds of the outcome log hazard of the outcome
between two groups between two groups; between two groups;

exp(b
k
) is the odds ratio exp(b

k
) is the hazard ratio

for group 1 relative for group 1 relative
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mean value of the outcome log odds of the outcome log hazard of the outcome
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the reference group the reference group
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Conclusion

This chapter provides an introduction to three statistical methods commonly used
to assess the effects of intervention and risk factors on medical outcomes.
Multivariate analysis is a very powerful tool in medical research that helps us to
understand the multidimensional nature of risk factors of diseases and how these
are interlinked. 

The choice of analysis method depends on the form of the response variable:
linear regression is used to analyze continuous responses, logistic regression for
binary data, and hazards regression for survival times. Table 4 briefly summarizes
the basic assumptions and the interpretation of results from these three separate
multiple regression methods. A common thread of these applications is to identify
and control for possible confounding factors through multivariate analysis. This
allows us to understand whether an association is independently important of
other factors. More about the use of multiple regression methods can be found in
Katz’s book [7].
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Adjustment 

for Covariates

Claudio Verzilli, Duolao Wang, 

Tim Clayton, and Wenyang Zhang

The main purpose of randomization is to avoid bias and
confounding by ensuring the characteristics of patients
(measured and unmeasured) that might influence outcome 
are randomly distributed between treatment groups so that 
the treatment groups are comparable (or balanced). As a 
result of randomization, any difference in the primary outcome
can be explained by the effect of the treatment or by random
variation. However, randomization does not guarantee perfect
balance across treatment arms with respect to one or more
baseline covariates, especially in small trials. The question 
then arises of whether it is more appropriate to adjust the
analysis for such baseline imbalances using statistical methods,
or to report unadjusted results. In this chapter, we explain the
circumstances under which adjusted and unadjusted analyses
will lead to different results, discuss the rationale for baseline
covariate adjustment, and give some recommendations on how
to mitigate this problem during the design and analysis of a trial.

■■❚❙❘ Chapter 25
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What are adjusted and unadjusted analyses?

To assess the treatment effect in randomized clinical trials, one may or may not
take into account the baseline characteristics of the subjects (or covariates). It is
this inclusion or exclusion of covariates in the analysis that distinguishes adjusted
analyses from unadjusted analyses. 

In the case of a clinical trial with a carefully conducted randomization, the
unadjusted analysis will give an unbiased estimate of the effect of a treatment on
an outcome of interest. However, there are situations where adjustment for
baseline covariates will lead to improved estimates in terms of reduced bias and
increased statistical efficiency [1]. 

Example: primary biliary cirrhosis trial

We can illustrate unadjusted and adjusted analyses using the following trial.
Primary biliary cirrhosis (PBC) is a chronic but eventually fatal liver disease. 
A randomized double-blind clinical trial was designed to assess whether the use 
of azathioprine could increase the survival of patients compared to placebo [2,3].
A total of 248 patients were entered into the trial and followed for up to 12 years.
The primary endpoint was the time to death from randomization. Clinical and
histological information was recorded at entry to the trial. 

We will use a subset of the PBC database, containing information on 191 patients
who had entry values for all prognostic variables. Of particular interest to the
investigators was the biochemical marker bilirubin. Some summary statistics of
bilirubin by treatment group are presented in Table 1, and the overall trial results
regarding the primary endpoint are summarized in Table 2.

Table 1 shows a baseline imbalance across the two treatment arms for bilirubin in
terms of their average values and spread. Mean and median baseline bilirubin in
the placebo group is 53.75 and 30.90 μmol/L, respectively, much lower than the
67.40 and 38.02 μmol/L for patients in the azathioprine group. The range was 
431.39 μmol/L for the placebo group compared with 529.79 μmol/L for the
azathioprine group. Bilirubin is known to be a strong predictor of survival time
and it is expected that this imbalance will have some impact on the observed
treatment effect on the primary endpoint. Due to the higher bilirubin levels in the
active treatment group at baseline, a higher mortality rate may be expected in this
group regardless of any treatment effect. In other words, the baseline bilirubin
level could be a confounding factor in this study (see Chapter 26). We can assess
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the impact of the bilirubin level on the primary endpoint using the Cox proportional
hazards model (see Chapter 21 for more details). 

To estimate the treatment effect without considering the baseline bilirubin
imbalance in the analysis, we could use a Cox model with treatment only as an
explanatory variable. This can be written as follows:

h
i
(t) = h

0
(t)exp(b

1
Treatment

i
)

where: 

• h
i
(t) is the hazard of death for patient i

• Treatment
i
is the treatment the patient received (1 = azathioprine, 

0 = placebo) 
• eb1 is the hazard ratio of death between azathioprine and placebo 

Parameter estimates for the above model and the PBC trial are reported in Table 3.
The estimated unadjusted treatment effect is 0.86 with 95% confidence interval (CI)
(0.57, 1.28), P = 0.455, suggesting that the active treatment did not significantly
improve survival. 

Table 1. Summary statistics for bilirubin level (μmol/L) at baseline by treatment group (primary biliary

cirrhosis trial).

Statistics Placebo Azathioprine

No. of patients 94 97

Mean 53.75 67.40

Standard deviation 70.50 88.95

Median 30.90 38.02

Minimum 5.13 7.24

Maximum 436.52 537.03

Table 2. Summary statistics for survival outcome by treatment group (primary biliary cirrhosis trial). 

Statistics Placebo Azathioprine

No. of patients 94 97

No. of deaths 49 47

Person-years 357 393.54

Incidence rate (/100) 13.73 11.94
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To control for the imbalance in bilirubin, the above Cox regression model can be
expanded to include bilirubin as another explanatory variable: 

h
i
(t) = h

0
(t)exp(b

1
Treatment

i
+ b

2
log[Bilirubin

i
])

where:

• log(Bilirubin
i
) stands for the logarithmically transformed bilirubin 

of patient i

This results in a new eb1 or adjusted hazard ratio. The log transformation of
bilirubin was introduced because it fitted the model better than other
specifications of a bilirubin effect, such as a linear effect. The adjusted hazard
ratio and its 95% CI are also displayed in Table 3. These suggest that, when 
the imbalance of bilirubin at baseline was taken into account, the active treatment
was found to be significantly protective (hazard ratio = 0.65, 95% CI [0.43, 0.99], 
P = 0.044). 

What is the rationale for adjusting for baseline covariates?

Randomization does not guarantee the removal of any imbalances in baseline
characteristics among patients enrolled in a clinical trial. If such imbalances
involve covariates that are strong predictors of an outcome variable, as in the 
PBC trial, it is possible that the estimates of treatment effect will be influenced by
these baseline differences. The final effect on the outcome will depend on the
magnitude of these differences and the strength of the correlation between the
outcome and the covariate in question, with the latter being the most important
contributing factor [4]. This has been demonstrated in the case of time-to-event
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Table 3. Comparison of unadjusted and adjusted hazard ratios of death from the Cox proportional hazards

model (primary biliary cirrhosis trial). 

A = azathioprine; CI = confidence interval; P = placebo.

Covariate Hazard ratio P-value 95% CI

Unadjusted analysis

Treatment (A vs P) 0.86 0.455 0.57, 1.28

Adjusted analysis

Treatment (A vs P) 0.65 0.044 0.43, 0.99

Log bilirubin 2.80 <0.001 2.25, 3.48
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data in the PBC trial, and particularly holds true in analysis of covariance
(ANCOVA) models, where a continuous outcome is regressed on treatment group
indicator and some continuous explanatory variables (covariates) [5]. 

A sensitivity analysis shows that, unless a baseline covariate is uncorrelated with
the outcome, the unadjusted analysis might not yield the correct P-values under
the null hypothesis of no treatment effect [5]. Therefore, adjustment for a baseline
covariate is recommended if the covariate is correlated to the outcome (eg, a
correlation coefficient >0.50 as suggested by Pocock et al) [5]. Interestingly, 
if the baseline covariate is strongly correlated with the outcome, there is still an
advantage in adjusting for a baseline covariate even if this is perfectly balanced
across the treatment arms [5]. 

A second reason for adjusting for prognostic covariates is the increase in precision
of the estimated treatment effect [4,5]. This, however, only applies to linear
regression models. Thus, from a study design perspective, there could be
considerable gains (in terms of increased power and reduction in the sample size
required) from collecting data on highly prognostic variables at baseline and then
including them in any analysis. In particular, one could take baseline
measurements of the outcome of interest, as these are likely to be strongly
correlated with the values of the outcome at the endpoint. 

Slightly different considerations apply to non-normal outcomes modeled using,
for example, logistic or Cox regression models. In particular, adjustment for 
a baseline prognostic variable will not increase precision; rather, in general, 
an increase in standard errors will be observed [6,7]. However, in the PCB trial, 
the standard error for the treatment effect was reduced after adjusting for 
log bilirubin. A summary of the advantages and disadvantages of an adjusted
analysis is displayed in Table 4.

What are the main methods of covariate adjustment analysis?

If imbalances are found for some baseline characteristics that are predictors of
outcome variables, then covariate adjustment analysis can be performed to
estimate adjusted treatment effects. As mentioned earlier, for highly prognostic
covariates, the adjusted analysis might be preferable even in the absence of
imbalance, especially for a continuous outcome. Adjustment is often performed
through the application of multivariate regression methods, by including the
relevant baseline variables as extra predictors. 
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There are a number of regression methods available and the choice of method
depends on the type of outcome variable. For example, if the outcome variable is
continuous, a linear regression model (such as ANCOVA) can be used to adjust for
any imbalances, in particular baseline measurements of the outcome variable.
Simulation studies have shown that this method has a higher statistical power 
for detecting a treatment effect compared to other approaches, such as the use 
of change (or percentage change) from baseline as a derived outcome in the
analysis [8,9].

For binary outcome data, either a stratified analysis or a logistic regression model
can be employed. In a stratified analysis, the treatment effect is estimated
separately across the subgroups of a prognostic factor. The Mantel–Haenzel
method permits the combining of subgroups, giving more weight to strata with
more information and providing an adjusted overall estimate of the treatment
effect. The advantage of such an analysis is the clarity of presentation, while the
major limitation is that only a small number of covariates can be considered.

Finally, if the outcome is survival time, a Cox regression model should be used, 
as illustrated in the PBC trial. The adjusted hazard ratio is often compared with
the unadjusted hazard ratio to assess the impact of any imbalances of baseline
variables on the estimates of the treatment effect.

Table 4. Advantages and disadvantages of an adjusted analysis.

Advantages

Imbalances are accounted for in known prognostic
factor(s) across treatment groups at baseline. Failure
to control for such factors can lead to a biased
estimate of the true treatment effect [2,3].

Increased precision of the estimated treatment effect
with normal outcomes modeled using regression
models: adjustment for baseline imbalances will
result in increased efficiency as explained variation is
subtracted [4,5].

Reduction in bias with non-normal outcomes modeled
using logistic or Cox regression models: in logistic
regression, for example, the adjusted analysis yields 
a larger standard error of the odds ratio estimate for 
a treatment effect than the unadjusted analysis, but 
this could be more than offset by a more accurate
estimate of the odds ratio [6,7].

Disadvantages

Choosing the covariates to be adjusted is inherently
subjective since many plausible analyses are possible.
Therefore, different results can be generated using
different covariates.

Covariates that are not collected at baseline but have 
a substantial impact on the primary endpoint cannot 
be accounted for in the adjusted analyses.

The simplicity of interpreting the treatment difference
obtained from unadjusted analyses is lost and results
are harder to describe – eg, the estimated treatment
effect from an unadjusted analysis of a two-way parallel
trial can be interpreted as the difference in the primary
endpoint between two patient populations receiving two
different treatments. On the other hand, it is difficult 
to generalize the results obtained from an adjusted
analysis since, eg, the estimated treatment effect takes
into account peculiar characteristics of the data at hand.
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Avoiding imbalances and planning an adjusted analysis 

at the design stage

If a baseline variable has little or no impact on the primary outcome variable, then
any imbalances between treatments are usually unimportant. On the other hand,
if a baseline variable is strongly associated with the primary outcome, then even a
modest level of imbalance can have an important influence on the treatment
comparison. By identifying the possible baseline variables that might have a
substantial effect on the primary endpoint, an ‘adjustment’ can be incorporated
into the trial analysis, regardless of whether there are serious imbalances or not. 

Two types of adjustment are often used at the design stage. The first strategy is to
perform a stratified randomization, to ensure a reasonable balance across
treatment groups in a limited number of baseline factors known to be strong
predictors. This method of adjustment can be extremely useful when a single
baseline predictor has a small number of groups (such as age groups) or a small
number of prognostic factors. However, if there are several influential predictors,
the number of strata needed will be large and this can lead to over-stratification
(see Chapter 7).

The second strategy is to prespecify in the protocol which baseline covariates will
be adjusted for and then present the results from the adjusted analysis. In many
cases it will be possible to identify important prognostic variables before the start
of the trial, by, for example, looking at previous studies. This strategy has the
advantage of overcoming the problem of subjectively selecting predictors in an 
ad hoc manner in the analysis. The US Food and Drug Administration (FDA) 
and the International Conference on Harmonisation of Technical Requirements
for Registration of Pharmaceuticals for Human Use (ICH) guidelines for clinical
reports require that the selection of and adjustment for any covariates should be
an integral part of the planned analysis, and hence should be set out in the
protocol and explained in the reports [10]. 

Conclusion

In most clinical trials, estimates of treatment effects unadjusted for baseline
covariates are produced and reported. The validity of an unadjusted analysis relies
on the assumption that there are no important imbalances involving measured
and unmeasured baseline covariates across treatment groups. When imbalances
occur on measured predictors of outcome variables, adjusted analyses can be
performed to account for this. 
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Adjustment can be carried out using various regression models by including the
prognostic covariates alongside the treatment group indicator. The adjusted
analyses can yield estimates that are more precise (in case of a normal regression
model) and less biased (for non-normal outcomes). Ideally, a list of covariates to
be adjusted for should be prespecified in the protocol. This will free the
investigator from having to decide post hoc which covariates, if any, are to be
included in the final analysis, a decision that is inherently subjective. 
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Confounding

Duolao Wang, Tim Clayton, and Ameet Bakhai

The aim of a clinical trial is to provide an accurate estimate 
of the effect of a therapy or procedure on an outcome 
such as death, compared with the effect of a control, such 
as a placebo. However, the estimate of this effect can be
distorted by various sources of bias during the design, 
conduct, and analysis of a study. Confounding is one such 
bias that can distort the estimate of the treatment effect, 
due to an imbalance across treatment groups of a variable
associated with the outcome. In this chapter, we describe 
what a confounding factor is and how it can impact a clinical
trial, explain how confounding factors can be identified, 
and introduce some methods that can be used to control
confounders during study design and analysis.

■■❚❙❘ Chapter 26
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What is confounding?

A confounding factor is a variable that is related to both the treatment being
investigated and the outcome [1,2]. Consider a hypothetical study in which drug X
produces an overall reduction in the number of deaths of patients with hypertension
compared with standard therapy. For screening purposes, a chest X-ray is performed
before randomization and later it is found that half of the patients in the standard
therapy arm have lung cancer compared with none in the drug X group. On closer
inspection, the rate of death in the patients diagnosed with cancer was found to be
four times higher than in the group of patients without cancer. From these later
observations, we can state that the reason that drug X appeared to do better was
because the patients in the standard therapy group suffered a higher rate of lung
cancer deaths. Therefore, lung cancer is a confounder for the relationship between
drug X and the likelihood of death in the study, since lung cancer (a cause of
premature death) is unevenly distributed between the two treatment groups.

Confounders are more usually a problem in observational studies, where 
the exposure of a risk factor is not randomly distributed between groups [3]. An
example from epidemiology would be a hypothetical observational study conducted
to assess the effect of the type of work undertaken by mothers during pregnancy
(office or manual) on the birth weight of the baby. Let us say that the results showed
that babies born to women with manual jobs had a lower birth weight than those born
to women working in offices. However, it is also established that the type of work
done during pregnancy is associated with other maternal characteristics and the
woman’s age and nutritional status. Furthermore, these maternal characteristics are
also known to be associated with the weight of the baby. Therefore, it is possible that
our observed association between the type of work undertaken during pregnancy and
the birth weight of the baby is due to these other characteristics. These characteristics
are considered to be confounding variables if they falsely accentuate the relationship
between a perceived risk factor and the outcome of pregnancy. 

Sometimes confounders are inherent in the design of early-phase clinical trials. For
example, dose-titration studies are used to assess the dose–response relationship in
drug development [4]. In a dose-titration study, a subject will only receive the next
higher dose if he/she fails to meet some objective response criterion at the current
dose level, such as a reduction of systolic blood pressure by a prespecified amount.
The major problem in this case is that the dose–response relationship is often
confounded with time course – it can be argued that the relationship found in a 
dose-titration study is not due to the dose, but rather to some other factor related to
the time course, such as the total length of time the patient is exposed to the drug
irrespective of dose concentration.
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What causes confounding?

We will use an extremely hypothetical example to explain how confounding can
occur in a clinical study. It has been reported that hormone replacement therapy
(HRT) improves mental function (such as reasoning and verbal skills) in
postmenopausal women. Therefore, a study to evaluate the effect of HRT on
mental function was conducted in 800 postmenopausal women. Half the women
recruited were allocated to daily HRT, while the remainder were given placebo
(the non-HRT group). The researchers evaluated the cognitive function of the
women 5 years after recruitment, and the primary endpoint was whether mental
function was improved or not above a predefined level. The overall results from
the study are summarized in Table 1.

The overall results appear to suggest that while there were women in both groups
whose mental function improved after 5 years, HRT treatment resulted in a
significantly greater proportion of women showing improvement than placebo
(24% vs 16%, odds ratio = 1.66 [95% CI 1.16, 2.36; P < 0.005]). However, when
these data are analyzed by socioeconomic status (using the categories high or low
socioeconomic status), as in Table 2, a different conclusion emerges.

Table 1. Hormone replacement therapy (HRT) trial example: overall study results.

Treatment Improvement in mental function Total number Proportion of women

Yes No of women showing improvement

No HRT 64 336 400 16%

HRT 96 304 400 24%

Odds ratio = 1.66 (95% CI 1.16, 2.36; P < 0.005).

Odds ratio for women in the high socioeconomic status group = 1.00 (95% CI 0.61, 1.63; P = 1.00).

Odds ratio for women in the low socioeconomic status group = 1.00 (95% CI 0.52, 1.93; P = 1.00).

Mantel–Haenszel estimate of the odds ratio, controlling for the socioeconomic status = 1.00 (95% CI 0.67, 1.48; P = 1.00).

HRT = hormone replacement therapy.

Socioeconomic Treatment Improvement in mental function Total number Proportion of women

status Yes No of women showing improvement

High No HRT 40 60 100 40%

HRT 80 120 200 40%

Low No HRT 24 276 300 8%

HRT 16 184 200 8%

Table 2. HRT trial example: improvement in mental function by socioeconomic status and treatment.
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The results in Table 2 show that there is no difference in the proportions of women
with mental function improvement between the two treatment groups if they are
considered separately by socioeconomic class. The proportion of women with
improved mental function was 40% in the high socioeconomic status group and
8% in the low socioeconomic status group, regardless of treatment. Accordingly,
the estimated odds ratio is 1.00 in each group for both levels of socioeconomic
class. Therefore, socioeconomic status did indeed confound the association
between HRT treatment and improvement in mental function, and so the
apparent difference found by the original analysis in Table 1 is spurious.

How can we confirm whether a variable is a confounder?

For a variable to be a confounder it must satisfy three conditions [1,2]:

• It must be associated with the treatment. 
• It must be a predictor of the outcome being measured.
• It must not be a consequence of the treatment itself.

We can illustrate how to identify a confounder using the hypothetical HRT study
as an example.

Step 1. Assess whether the potential confounder has an association

with the treatment group

From the HRT example, it is clear that a variable can confound the relationship
between treatment and outcome only if it is unevenly distributed between the
treatment groups. In our example, 50% of the women taking HRT were of high
socioeconomic status compared with only 25% of women in the non-HRT 
group, indicating that the distribution of socioeconomic status among the two
treatment groups was imbalanced. The chi-square test shown in Table 3 confirms
that this imbalance was highly statistically significant (χ2 = 53.27; P < 0.0001).
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Table 3. Hormone replacement therapy (HRT) trial example: association between socioeconomic status 

and treatment.

Treatment Number in each socioeconomic status group (%) Total 

Low High

No HRT 300 (75) 100 (25) 400

HRT 200 (50) 200 (50) 400

χ2 = 53.27; P < 0.0001. 
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Step 2. Assess whether the potential confounder is a predictor 

of the outcome

The second condition for a variable to be a confounder requires that the potential
confounder must also be related to the outcome being measured. The relationship
between socioeconomic status and improvement in mental function is examined
in Table 4. The results show that the odds of having improved mental function in
the low socioeconomic status group are only about 13% of that in the high
socioeconomic status group. The low P-value suggests that there is strong 
evidence of a difference in improvement in mental function between the two
socioeconomic groups in favor of the high socioeconomic status group. Based on
these results, socioeconomic status is an important predictor of an improvement
in mental function among postmenopausal women.

Step 3. Assess that the potential confounder is not a consequence 

of treatment

In the HRT example, it is not possible for the treatment allocation to influence 
the socioeconomic class of a woman on admission, since this is determined before
treatment randomization. Hence we can conclude that socioeconomic status
would not lie on the causal path between HRT treatment and the primary
endpoint (improvement in mental function). 

Hence, the socioeconomic status variable satisfies all the criteria for being a
confounding factor.

Evaluating the degree of confounding

If a prognostic factor satisfies the three conditions for being a confounder, 
the next step is to evaluate the degree of confounding. This should be done by
comparing the unadjusted (also known as crude) estimates of treatment affect –
ie, the estimates that are unadjusted for the potential confounding factor – 
with the adjusted estimates. There is no specific test to determine whether 
a factor is a confounder in respect of any given treatment effect, but, if we adjust
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Odds ratio = 0.13 (95% CI 0.08, 0.20; P < 0.0001). 

Table 4. Hormone replacement therapy (HRT) trial example: comparison of proportion of mental function

improvement in each socioeconomic group.

Socioeconomic Improvement in mental function Total number Proportion of women

status Yes No of women showing improvement

High 120 180 300 40%

Low 40 460 500 8%
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for a potential confounder in the analysis and find that the adjusted and
unadjusted estimates of the treatment effect differ, this suggests that the
unadjusted estimate is confounded by the factor under consideration. In the HRT
example, the unadjusted odds ratio was 1.66, but this became 1.00 after
stratification by socioeconomic status, suggesting that socioeconomic status 
is a positive confounder.

Positive and negative confounding 

Positive confounding is said to occur when the effect of a confounder is to make
the observed treatment effect appear stronger (ie, to move the odds ratio further
away from 1 when the confounder is unaccounted for) [1], as in the HRT example.
Confounding can also work in the opposite direction – known as negative
confounding – where it can result in the treatment effect appearing to be weaker
than it really is after adjusting for the confounder [1].

Controlling confounding through study design

The effect of confounding can be prevented at different stages in a clinical trial,
but the most effective method is to restrict it at the design stage. In general,
randomization – a cornerstone of clinical trials – is the most effective way of
preventing confounding. The purpose of randomization is to ensure that each
subject has an equal chance of being assigned to each treatment group, and 
that the treatment assignment cannot be predicted in advance [4,5]. Ideally,
randomization should result in the balanced distribution of all potential
confounders, whether known or unknown, across all treatment groups at baseline. 
For a large trial, a simple randomization scheme should achieve this. However, in
smaller trials it is possible for an imbalance in one or more baseline characteristics
to occur, which could result in confounding, even if this imbalance might not be
sufficient to reach statistical significance. Therefore, attention should be paid to
identifying potential confounders – which can be adjusted for at the analysis stage
if necessary – especially when the sample size of a clinical trial is small.

When designing clinical trials, if we know from previous studies that some
characteristics are important prognostic factors, we can limit their potential for
confounding by means of a stratified randomization method [4,5]. Stratified
randomization is used to ensure a reasonable balance between treatment groups
of one or more potential confounding factors, such as age, gender, presence of
diabetes, severity of illness, geographical location, and socioeconomic status 
(see Chapter 7). 
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For example, a randomized placebo-controlled trial was conducted to test the
feasibility and safety of the withdrawal of inhaled corticosteroids (ICS) from
treatment for cystic fibrosis (CF) in 240 children and adults who were already
taking ICS. Experience from earlier studies suggested that three factors – atopy
(present or absent), forced expiratory volume in the first second (FEV

1

[40%–60%, 61%–80%, and 81%–100%]) and age (<17 years, ≥17 years) – were
the most important determinants of time to first respiratory exacerbation (the
primary outcome measure of the trial). The intention was to balance treatment
within each of these 12 strata (the number of strata is equal to: number of strata
for atopy × number of strata for FEV

1
× number of strata for age = 2 × 3 × 2).

Stratified randomization is then performed by generating a randomization list for
each of the 12 strata using randomized-permuted blocks (which ensure that there
are equal treatment numbers within each stratum at various points during
recruitment). The aim of this method is to produce groups that are balanced by
each of the three factors throughout the duration of the study.

One problem that can easily occur is over-stratification. Suppose that in the above
example 10 centers were recruiting patients, then 120 strata would be needed for
240 patients. The higher the ratio of strata to patients, the harder it is avoid
imbalances as there can be many incomplete blocks. Therefore, the chosen
stratification factors should be restricted to the variables that are known to be of
particularly prognostic importance. 

An alternative method used in clinical trials is called minimization [4–6]. The aim
of minimization is to ensure a balance of a number of potential confounding
factors between treatment groups. Minimization – also called an adaptive
randomization procedure – assigns subjects to a given treatment group in order to
minimize the differences between the treatment groups on a number of selected
confounding factors. This is based on the idea that, at any stage of the trial, 
the probability of allocating the next patient to the treatment that will minimize
the overall imbalance between the groups according to the selected factors will 
be greater than 0.5. This method is employed in situations that involve many
prognostic factors, and, in this case, patient allocation aims to balance the
subtotals for each level of each factor. Note that for such a sequential scheme it is
not possible to prepare a randomization list in advance, and there are practical
difficulties in implementation.

Methods for controlling confounding during analysis

Despite steps taken during the design of a trial, it is still possible for an imbalance
to occur that might impact the association between the treatment group and the
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measured outcome. Once confounders are identified, the next stage is to control
for these in statistical analysis so that unbiased results can be obtained. There are
two methods for this: stratification and regression modeling [1,2].

Stratification 

The simplest way to control for a confounding factor is to perform the analysis
within each stratification of the confounder and then to calculate a summary
measure from these strata-specific estimators using a suitable weighting scheme.

The most common way of performing such a stratification analysis is to use
Mantel–Haenszel methods, which adjust for a categorical confounding factor on
the relationship between treatment and some binary outcome [1]. Using
Mantel–Haenszel methods on the data from our earlier HRT example (Tables 1
and 2), the Mantel–Haenszel estimate of the odds ratio adjusted for
socioeconomic class is calculated as 1.00 (95% CI 0.67, 1.48; P = 1.00). The
adjusted result suggests that, in this example, HRT does not result in improved
mental function in postmenopausal women.

Regression modeling

As the number of potential confounders or number of possible sub-strata for 
a confounder increases, controlling confounding through stratification presents
problems. This is because unless the overall sample size is large, each stratum will
contain only a very small number of patients. In this case, a multivariable
regression model approach is the preferred analysis method. There are a number
of specific regression models, and the most appropriate technique will depend on
the type of data to be analyzed. For example:

• A linear regression model is most suitable for a continuous outcome
measure such as blood pressure.

• A logistic regression model is the preferred option for a binary outcome
such as the occurrence of death.

• A Cox regression model should be used for a time-to-event outcome 
such as time to next seizure or pain episode.

The regression model is a very powerful technique that allows for the estimation 
of the effects of a treatment and a whole range of prognostic factors, each one
adjusted for the potential confounding effect of the others. For the HRT example,
using the logistic regression model to adjust for confounding produces identical
results to the Mantel–Haenszel method.
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What is the difference between interaction (or effect

modification) and confounding?

Consider a study investigating the effect of vitamin A supplements on childhood
growth. Among children who are vitamin A deficient, it is likely that vitamin A
supplements will increase growth, while supplements may have no effect in
children who are not deficient in vitamin A. This is an example of interaction (or
effect modification). This can be defined as a situation where the treatment effect 
(ie, vitamin A supplements) on the primary outcome (ie, height) varies according
to the levels of a third factor (ie, the level of vitamin A before supplementation).

In the evaluation of a clinical trial, confounding and interaction effects are 
two different things. Confounding is a nuisance effect that distorts the observed
treatment effect on an outcome of interest because the confounder is associated 
with the outcome and is unequally distributed between the treatment groups. 
We aim to control confounding in the design and analysis stages of a clinical 
trial to enable the true treatment effect to be estimated.

Interaction is a real effect, independent of the study design, that causes the treatment
effect to vary according to the level of a third factor, which we want to detect.
Exploring the nature of interaction can be very helpful in understanding the
biological processes underlying an association between a treatment and an
outcome. Interaction is discussed further in the next chapter.

Conclusion

Confounding is the situation where the observed association between a prognostic
factor (such as treatment) and an outcome measure is made stronger or weaker 
by the imbalance of another factor. In a clinical trial, confounding factors can
falsely obscure or accentuate the treatment effect. Therefore, attention should be
paid to controlling for potential confounders during the design and analysis stages
of clinical trials. 

When designing a clinical trial, the most effective way to reduce the possibility of
confounding is to employ a suitable randomization method. When analyzing the
data, unexpected confounders can be controlled for by compensating for their
imbalance, so that the net impact of the treatment effect can be estimated, while
controlling for the effect of these confounders.
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Interaction

Duolao Wang, Tim Clayton, and Ameet Bakhai

Interaction effects in clinical trials occur when a subject’s
response to a treatment varies according to the level of another
variable such as age or gender. Identifying and understanding
the real interaction effects can help us target therapies to
subgroups of patients who may benefit most. In this chapter,
we review the basis of this most important concept and
describe different types of interaction effects in clinical trials.
We also describe how an interaction effect can be evaluated
and interpreted within a framework of a regression model.

■■❚❙❘ Chapter 27
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What is an interaction effect?

In a clinical trial, an interaction effect occurs when a treatment effect is dependent
on another factor (eg, gender). For example, suppose a clinical study is carried out
to investigate the effect of vitamin A supplements on childhood growth in a
developing country. Vitamin A supplements might have a greater effect on growth
in children from more deprived areas compared with children from less deprived
areas. In this example, the effect of the treatment (vitamin A supplementation) on
the primary outcome (height during childhood) varies according to the levels of 
a third pre-existing factor (the prior nutritional status of the child). Therefore, the
treatment effect is dependent on nutritional status at baseline. In epidemiology,
this phenomenon is often referred to as effect modification because the third
variable modifies the treatment effect on outcome.

Example 1

Table 1 presents the results of a hypothetical clinical trial assessing the effect of 
a new antihypertensive drug on systolic blood pressure (SBP) among 800 patients
with hypertension. The results show that the antihypertensive drug reduces SBP,
but the drug’s benefit appears to be greater for nonsmokers (a reduction in SBP
of –2.71 mm Hg) than for smokers (a reduction in SBP of –0.53 mm Hg).

When to look for an interaction effect

During the design or analysis of a clinical trial, investigators are often interested in
knowing whether the treatment effect of a study drug or therapy varies according to
patient characteristics. For example, a treatment effect might decrease with age, or
be larger in subjects in a particular diagnostic category. To address this, statistical
tests of interactions between treatments and relevant covariates are often planned
and performed. If such interactions are anticipated, or are of particular prior
interest, then the planned confirmatory analysis will include a subgroup analysis, or
will use a statistical model including interactions. In most cases, subgroup or
interaction analyses are exploratory in nature and carried out after data collection.

Table 1. Mean reduction in systolic blood pressure (in mm Hg) by hypertensive drug treatment and smoking

status in a hypothetical trial on 800 hypertension patients (200 in each group).

Smoking status Hypertensive drug treatment

Placebo Drug

Smoker –2.07 –2.60

Nonsmoker –1.94 –4.65
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Classification of an interaction effect 

Interaction effects can be classified as quantitative or qualitative [1]. 
A quantitative interaction effect occurs when the magnitude of the treatment
effect varies according to different levels (values) of another factor, but the
direction of the treatment effect remains the same for all levels of the factor. 
A qualitative interaction occurs when the direction of the treatment effect differs
for at least one level of the factor.

To illustrate the two interaction effects described above, consider a hypothetical
trial of an antihypertensive drug. Suppose that one of the objectives 
of the trial is to assess whether the reduction in SBP is the same for smokers and
nonsmokers. Treatment and smoking status both have two levels (for the former, 
the levels are placebo and active drug treatment; for the latter, the levels are 
nonsmoker and smoker), generating four possible combinations. Suppose that the
primary endpoint is the change in SBP from baseline. The effect of each
combination on the outcome can be displayed graphically to allow for visual
inspection of the various interactions (Figure 1). 

In Figure 1, mean change in SBP from baseline is on the vertical axis, while the
horizontal axis represents smoking status. The mean change from baseline SBP by
treatment can then be plotted at each level of smoking status, and a line can 
be drawn between the points for each treatment level. The distance between 
the two lines represents the treatment effect (the difference in the mean change 
in SBP between the active drug and the placebo).

In Figure 1, panel A shows a pattern of no interaction effect; this is characterized
by two parallel lines that are equidistant at the two levels of smoking status (ie, the
effect of the study drug is to reduce SBP by the same amount in smokers and
nonsmokers). Panels B and C show a possible quantitative interaction between
treatment and smoking status; the two lines do not cross and so the treatment
effect does not change its direction, although the distance between the lines is
different at each level of smoking status. In panels B and C, the results indicate
that the active treatment is more effective at reducing SBP than placebo. While
panel B demonstrates that the treatment leads to a greater reduction in SBP
among nonsmokers than smokers, the opposite effect is observed in panel C. 

In panel D, the difference in the mean reduction in SBP between the active
treatment and placebo group is positive (a larger reduction in SBP on placebo 
than on active treatment) among smokers, but negative (a larger reduction in SBP
on active treatment than on placebo) among nonsmokers. Panel D shows a
possible qualitative interaction between treatment and smoking status. Since the
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two lines cross each other, a qualitative interaction of this kind is also sometimes
called a crossover interaction.

Evaluation of an interaction effect

To formally evaluate whether there is an interaction effect between two variables
and the magnitude of that effect, statistical tests must be performed. There are 
a number of statistical methods for the evaluation of interaction effects [1–3]. 
The most commonly used method is to use a regression model. Which regression
model to choose depends on the type of data to be analyzed. For example, linear
regression is most suitable for a continuous outcome measure (eg, SBP), 
while a logistic regression is preferred for a binary outcome (eg, death) (see
Chapter 24).

Figure 1. Plots demonstrating quantitative and qualitative interaction. 

(A = no interaction; B and C = quantitative interaction; D = qualitative interaction).

SBP = systolic blood presssure.
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Using a linear regression model

Using data from the hypothetical trial in Table 1, a linear regression model can 
be applied to illustrate how to evaluate the interaction effect in a trial where the
primary endpoint is a continuous variable. In this example, Y represents the
change in SBP for each patient, X

1
represents the treatment variable (X

1
= 0 for

placebo, and X
1

= 1 for active drug treatment) and X
2

represents the smoking
status variable (X

2
= 0 for a nonsmoker, and X

2
= 1 for a smoker). A linear

regression model that predicts Y based on X
1

and X
2

can then be expressed as:

Y = α + βX
1

+ γX
2

+ ε (1)

Where α is a constant, β and γ represent the effects of the treatment (X
1
) and

smoking status (X
2
) on SBP (Y), respectively, and ε is a random error. The above

model (1) assumes that the effects of X
1

and X
2

are additive and are independent
of each other, and so it is often called the main effect model.

The interaction between treatment and smoking status can now be investigated by
adding another term into the linear regression model (1):

Y = α + βX
1

+ γX
2

+ δ(X
1
X

2
) + ε (2)

This means that, in addition to the main effect of treatment (X
1
) and smoking

status (X
2
), there is an interaction effect (δ) between treatment and smoking

status (X
1
X

2
). The value of X

1
X

2
is 1 for a patient who is a smoker on active

treatment, and 0 otherwise. The model implies that the change in SBP differs
according to different combinations of treatment and smoking status. In other
words, the treatment effect differs by the smoking status. If δ is found to be
statistically significantly different from 0 then there is evidence of an interaction
between treatment and smoking status, suggesting that the effect of the treatment
depends on the smoking status of patients. 

Example 1 (continued)

Table 2 presents the results from fitting the two regression models described in
equations (1) and (2), using the data in Example 1. The main effect model shows
that the difference in mean SBP reduction is statistically significantly different,
not only between the antihypertensive drug and placebo groups, but also between
smokers and nonsmokers. However, whether the drug works differently for
smokers and nonsmokers is uncertain. To address this uncertainty, the interaction
term is introduced. 

Clinical Trials: A Practical Guide  ■❚❙❘
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The null hypothesis for the interaction test is H
0 
: δ = 0, ie, there is no interaction

between smoking status and the treatment for reducing SBP. The linear model
estimate for δ is 2.18 mm Hg (95% CI 1.61, 2.76) with the corresponding P-value
for the test (H

0 
: δ = 0) being <0.01. Therefore, there is statistically significant

evidence of an interaction between smoking status and treatment. 

Once a significant interaction effect is found, the modified effects for different
combinations of treatment and smoking status should be calculated. Table 3
presents the estimated treatment effect (difference in SBP reduction between 
drug group and placebo group) for smokers and nonsmokers. The main effect
model indicates that the treatment difference is the same (–1.62 mm Hg) for
smokers and nonsmokers. On the other hand, the interaction effect model
suggests that the treatment effect is –2.71 mm Hg among nonsmokers compared
with –0.53 mm Hg among smokers. As the direction of treatment effect is negative 
for both smokers and nonsmokers (–0.53 and –2.71, respectively), the interaction
effect is a quantitative interaction. 

Table 3. Estimate of treatment effects on systolic blood pressure reduction by smoking status, 

using the results of the regression model in Table 2.

Table 2. Use of a linear regression model to evaluate an interaction effect between smoking status 

and treatment. 

Regression Variable Regression P-value 95% CI

analysis model coefficient

Main effect model Constant –2.49 <0.01 –2.75 –2.23

Treatment (X
1
) –1.62 <0.01 –1.92 –1.32

Smoking status (X
2
) 0.96 <0.01 0.66 1.26

Main and interaction Constant –1.94 <0.01 –2.23 –1.65
effect model Treatment (X

1
) –2.71 <0.01 –3.12 –2.30

Smoking status (X
2
) –0.13 0.53 –0.54 0.28

(Smoking status) 2.18 <0.01 1.61 2.76
(treatment) (X

1
X

2
)

Regression Variable Regression P-value 95% CI

analysis model coefficient

Main effect model Smoker –1.62 <0.01 –1.92 –1.32

Nonsmoker –1.62 <0.01 –1.92 –1.32

Main and interaction Smoker –0.53 <0.01 –0.94 –0.12
effect model Nonsmoker –2.71 <0.01 –3.12 –2.30
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Other means of evaluating an interaction effect can also be used, such as the
Mantel–Haenszel method [1–3]. An interaction test is sometimes called a
homogeneity (or heterogeneity) test. For example, in a multicenter study, if there
is no significant interaction between treatment and center, then the treatment
effect is said to be homogeneous across different centers and an overall treatment
effect can be obtained by pooling all centers together. On the other hand, if a
significant interaction is found between the treatment and the center, then the
treatment effect is heterogeneous across different centers. Under such
circumstances, pooling the estimate of treatment effect together from different
centers might produce a misleading overall result. 

Examples of types of interaction effects seen in clinical trials

The objective of evaluating an interaction effect in a clinical trial is to assess
whether the treatment effect is the same among different levels (values) of
another factor or factors. The factor might be the other drugs under evaluation 
in a factorial design, or some stratification variable – such as severity of the
underlying disease, gender, or other important prognostic factors. In the following
discussion, different types of interactions will be described in different clinical 
trial settings.

Example 2: Treatment-by-treatment interaction in a factorial design

The GISSI-Prevenzione (Gruppo Italiano per lo Studio della Streptochinasi
nell’Infarto Miocardico Prevenzione) trial investigated the effects of vitamin E 
(α-tocopherol) and n-3 polyunsaturated fatty acids (PUFA) supplementation 
in patients who had recently suffered a myocardial infarction [4]. In this trial,
11,324 patients surviving a recent myocardial infarction (≤3 months previously)
were randomly assigned to receive supplements of n-3 PUFA (1 g daily, 
n = 2,836), vitamin E (300 mg daily, n = 2,830), both vitamin E and n-3 PUFA 
(n = 2,830), or neither (control, n = 2,828), using a 2 × 2 factorial design. 
The primary combined efficacy endpoint was a composite of death, nonfatal
myocardial infarction, and stroke.

Table 4. Number of patients allocated to each treatment in the GISSI-Prevenzione trial [4].

n-3 polyunsaturated fatty Vitamin E supplementation Total

acids supplementation Placebo Active

Placebo 2,828 2,830 5,658

Active 2,836 2,830 5,666

Total 5,664 5,660 11,324
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The number of patients randomized to each arm of the trial is summarized in
Table 4. In Table 5 the event rates for each of the four arms are given, as well 
as the total event rates for the n-3 PUFA and vitamin E arms. The difference 
in the event rate between subjects receiving placebo and active n-3 PUFA is 
0.42% (= 13.11% – 12.69%) for subjects receiving active vitamin E, and 2.09% 
(= 14.64% – 12.55%) for subjects receiving placebo (instead of active vitamin E).
Similarly, the difference in the event rate between those receiving placebo and
active vitamin E is –0.14% (= 12.55% – 12.69%) for subjects receiving active 
n-3 PUFA, and 1.53% (= 14.64% – 13.11%) for subjects receiving placebo
(instead of active n-3 PUFA).

These descriptive statistics suggest that the difference in the event rate for 
one treatment may depend on the level of the other treatment, or, in other words,
that there is a possible interaction effect between two treatments. To explore this
formally, two logistic regression models were fitted (a main effect model and an
interaction effect model), where the outcome variable was the occurrence of the
primary endpoint. The results are displayed in Table 6.

The results from the main and interaction effect logistic regression model in 
Table 6 suggest that there is no evidence of an interaction effect between the two
treatments (for the interaction term, P = 0.21). In other words, the observed
treatment effects were the result of chance. Therefore, the reduction in the primary
endpoint event rate attributed to n-3 PUFA is not affected by taking vitamin E, 

Table 5. Rate of primary endpoint (number of primary endpoint) by treatment in the GISSI-Prevenzione trial [4].

n-3 polyunsaturated fatty Vitamin E supplementation Total

acids supplementation Placebo Active

Placebo 14.64% (414) 13.11% (371) 13.87% (785)

Active 12.55% (356) 12.69% (359) 12.62% (715)

Total 13.59% (770) 12.90% (730)

Table 6. Use of a logistic regression model to evaluate the interaction effect between n-3 polyunsaturated fatty

acids (PUFA) and vitamin E supplementation in the GISSI-Prevenzione trial [4].

Regression Variable Regression P-value 95% CI

analysis model coefficient

Main effect model n-3 PUFA 0.90 0.05 0.80 1.00

Vitamin E 0.94 0.27 0.84 1.04

Main and interaction n-3 PUFA 0.84 0.02 0.72 0.97
effect model Vitamin E 0.88 0.10 0.76 1.02

(n-3 PUFA) (vitamin E) 1.15 0.21 0.93 1.43
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so the results from the main effect model should be reported. In reporting a
factorial design trial, it should be clear that the potential interaction effect
between treatments has been considered.

Example 3: Treatment-by-center interaction in a multicenter trial

The above example demonstrates how to test for an interaction between two
treatments. However, in clinical trials it is sometimes necessary to check for 
an interaction between the treatment and other important prognostic factors. 
Of special importance is treatment-by-center interaction in multicenter studies. 
A multicenter study is a single study involving several study centers (sites or
investigators) [5], which should permit an overall estimation of the treatment
difference for the targeted patient population across different centers (see
Chapter 16). When analyzing a multicenter study, it may be appropriate to
explore whether there is a treatment-by-center interaction. 

Consider a hypothetical multicenter trial for assessing the efficacy of two drugs 
(A and B) in reducing SBP among hypertensive subjects. The study is a randomized,
multicenter trial that involves 1,000 patients in 10 centers (each center has 
100 patients). The mean changes in SBP from the baseline after 5 weeks of treatment
are given in Table 7, and the mean change in SBP against study centers is plotted
in Figure 2. In this figure, the centers are ranked according to the magnitude of
the difference in mean change in SBP between drugs A and B. 

As can be seen from Table 7, seven centers show a difference in the positive
direction, while three centers show a change in a negative direction. Regression
analysis indicates that a significant qualitative interaction between treatment 

Table 7. Reduction in mean systolic blood pressure (SBP) by center in a hypothetical multicenter study.

Center Number Mean SBP (mm Hg) Difference in  SBP between Rank by

number of patients Drug A Drug B drug B and drug A (mm Hg) difference 

1 100 –3.01 –1.42 1.59 3

2 100 –4.92 –5.78 –0.86 8

3 100 –3.39 1.36 4.75 1

4 100 –5.70 –6.75 –1.06 9

5 100 –4.88 –8.43 –3.55 10

6 100 –4.26 –4.19 0.07 7

7 100 –3.74 –3.16 0.58 5

8 100 –3.25 –0.25 3.01 2

9 100 –4.59 –4.31 0.29 6

10 100 –3.05 –2.31 0.74 4
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and center occurred (P < 0.001). If the interaction is ignored and a main effect
regression analysis is performed, the overall treatment effect is estimated to be
0.56 mm Hg (95% CI 0.20, 0.91; P < 0.01). However, this positive significant result
is somewhat misleading because it is not reproducible in the three centers showing
a negative change. In other words, if we randomly select a center from the pool of
centers and repeat the study with the same protocol, there is a relatively high
chance that a totally opposite result will be observed. The three centers with 
a negative change have 300 patients who show different results. As a consequence,
the reproducibility and generalizability of the targeted patient population and the
treatment setting are questionable. 

In other words, if there is no evidence of treatment-by-center interaction, the data
can be pooled for analysis across centers. By carrying out an analysis with combined
data, an overall estimate of the treatment effect across centers is provided. On the
other hand, if an interaction effect between treatment and center is found, the
overall (or average) summary statistic can be misleading and, hence, considered
to be inadequate [5,6]. In this case, it is preferable to describe the nature of the
interaction and to indicate which centers contribute towards the interaction [5].

Treatment-by-period interaction in a crossover trial

In the earlier stages of drug development, crossover trials are frequently used to
investigate the pharmacokinetics of a study drug. In any crossover trial a so-called
treatment-by-period interaction can be present. This means that the effect of the
treatment is influenced by the period of the trial that the patient is in. Even after
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Figure 2. Mean change in systolic blood pressure (SBP) from baseline by center for a hypothetical

multicenter study.
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an adequate washout interval (where the subject is free of drugs), the effect of
either treatment can be influenced by whether it is administered first or second,
particularly if patients can sense any real therapeutic effects. For example, in a
crossover trial testing two antihypertensive drugs, both drugs are more effective in
the second period than in the first. 

If this period effect is large, it can be minimized by randomly allocating equal
numbers of subjects to different sequences and applying some form of statistical
adjustment. In a bioequivalence trial, such an interaction might be present even in
the absence of any carry-over (long term residual) effect. The problem is that we
cannot tell whether the interaction is due to carry-over or a period-by-treatment
interaction, as these two effects are confounded and can never be separated.
Therefore, the problem of carry-over is best avoided by ensuring that a crossover
trial is properly designed (see Chapter 10). 

Conclusion

An interaction effect in a clinical trial is where there is a change in the magnitude
or direction of the association between a treatment and an outcome according to
the level of a third variable. Unlike a confounding effect which can be controlled
during a clinical trial, an interaction effect is an unexpected inherent modification
of the treatment effect, and can only be explored and assessed once the data have
been collected. 

The identification of interaction effects can assist in targeting specific therapies 
at subgroup populations who are more likely to benefit from the therapy.
Interaction effects can also help treatment mechanisms to be understood, furthering
research in the early stages of drug development. In the later phases of drug
research, interaction effects might affect the labeling and prescribing of the product.

In summary, it is important to identify and understand interaction effects, and
specific statistical methods might be required to elucidate and quantify these effects.
Finally, it is important to note that interaction tests should be used cautiously in
data analysis, as most trials are not powered to detect such interaction effects, 
and the results of such tests are always exploratory in nature [7].
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Repeated

Measurements

Duolao Wang and Zoe Fox

In many clinical trials, particularly pharmacokinetic and
pharmacodynamic studies, an outcome or marker measurement
is recorded at different time points for each subject, generating
repeated measurement data, which are often correlated.
Failure to take account of such correlation in the analysis 
could produce biased estimates of true treatment effects. 
There are various strategies that can be used to analyze such
data, depending on the questions you wish to answer and the
type of data you will be collecting. In this chapter, we present
an overview of the various strategies for dealing with repeated
measurements of a continuous outcome, and explore in more
detail the use of summary measures, which convert mutiple
data points into a singular measure (eg, mean or area under
the curve).

■■❚❙❘ Chapter 28

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 317



❘❙❚■ Chapter 28 | Repeated Measurements

318

What are repeated measurements?

A repeated measurement in a clinical trial is an outcome variable that is measured
two or more times for each subject, usually over a period of time, eg, before,
during, and/or after an intervention or treatment. Figure 1 illustrates repeated
measurements of systolic blood pressure (SBP) at baseline, 2, 4, 6, and 8 weeks 
for 10 patients in a clinical trial.

Repeated measurements are commonly encountered in pharmacokinetic and
pharmacodynamic studies, eg, collection of blood samples at preselected time
points in order to measure the blood plasma concentration of a drug. Many
factors (eg, gender, race, and weight) can influence the absorption and
elimination of a study drug. As a result, some people might exhibit consistently
higher blood plasma concentrations of a drug than others during the study period.
This phenomenon is generally referred to as tracking. In Figure 1, the patients who
have a higher SBP (such as subjects 1, 6, and 10) or a lower SBP (such as subjects
2, 4, 5, and 8) tend to have consistently higher or lower SBP throughout follow-up.
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Figure 1. Repeated measurements of systolic blood pressure (SBP) for 10 patients in a clinical trial.

The numbering on the lines refers to the subject’s number in the trial.
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Key considerations when dealing with repeated 

measurement data

There are two key considerations when dealing with repeated measurement data.
The first consideration is how to deal with the correlation between the repeated
measurements for an individual (known as the correlation structure). This is the
principal distinction between the different methods of analysis [1–3]. To draw
valid scientific inferences, the correlation structure must be taken into account.
Failure to control for such correlation effects can lead to biased results: the
statistical significance of the observed treatment effects may be over estimated
and spuriously significant conclusions could be drawn [1,2].

Secondly, not all repeated measurement data are complete – individuals might be
lost to follow-up, withdraw consent, or die during the study – consequently, some
measurements might be missing [4]. In Figure 1, data on SBP are missing for
subjects 2 and 10 at 8 weeks. 

What strategies are used to analyze repeated 

measurement data?

Four main strategies for handling repeated measurement data have been used in
clinical research [3,5,6]. They are:

• analysis at a predefined time point
• time-by-time analysis
• use of statistical models
• use of summary measures

Analysis at a predefined time point

The first strategy is to analyze the response outcome at a predefined time point
[5]. This approach is most suitable when the response to the treatment at a
particular time point is of clinical interest. The change in response from baseline
can also be measured to control for individual variations in baseline values.
However, the strategy does not utilize information from other time points, thus
wasting potentially valuable information. To address this problem, a time-by-time
analysis is sometimes performed [5]. 

Time-by-time analysis

An alternative to analysis at a predefined time point is time-by-time analysis. 
A group mean (the mean of all the patients’ data) can be calculated at each
separate time point and a statistical analysis carried out – a time-by-time analysis.
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For example, in a study comparing coronary-artery bypass surgery with and
without cardio-pulmonary bypass and cardiac arrest (on- and off-pump surgery),
Khan et al. compared mean troponin T levels for off-pump and on-pump patients
at 0, 6, 12, 24, 48, and 72 hours after randomization [7]. It was found that at 
6 and 12 hours postoperatively, troponin T levels were significantly higher in the 
on-pump group than the off-pump group (P < 0.001 for both comparisons), 
but this difference disappeared by 24 hours. 

It should be noted that although analysis at each time point is often requested by
clinicians, this method of analysis should not be encouraged because false-positive
results may be generated due to multiple testing (ie, a significant result may be
found due to chance). In addition, this method ignores within-subject correlation.
If a significant difference is found between treatment arms at one time point,
differences are likely to be significant at subsequent time points. Hence, time-by-
time analysis is best used when there are a small number of time points and the
intervals between them are large [5].

Use of statistical models

The use of statistical models in the analysis of repeated measurement data is
becoming increasingly popular [1–3,5,6]. These models can be particularly useful
when the object of the study is to assess the average treatment effect over the
duration of the trial. During the last 20 years, statisticians have considerably
enriched the methodology available for the analysis of such data [1,5].

These models offer a variety of approaches for handling both correlation between
repeated measurements and missing values. Of these, the mixed model has been
widely used in the analysis of repeated measurement data in clinical trials, for two
reasons [2,5]: 

• it can accommodate a wide variety of ways in which the successive
observations are correlated with one another

• it does not require complete data from all subjects

Use of summary measures

The most straightforward method of analyzing repeated measurement data is 
to use a summary measure. This method is sometimes known as response profile
analysis [5,6]. There are two steps to a summary measure approach. The first step
is to calculate a summary statistic from the repeated measurements for each
subject, eg, the mean, maximum, area under the curve (AUC). The second step is
to compare the difference in the summary statistic by treatment groups, by using
a standard statistical technique such as a t-test, a nonparametric test, or an
analysis of variance. 

❘❙❚■ Chapter 28 | Repeated Measurements
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The summary measure needs to be chosen prior to the analysis of the data 
and it should be representative of some relevant aspect of the subject’s response
profile. In some situations, more than one summary measure is needed. This 
is the main statistical method that is used in the analysis of pharmacokinetic and
pharmacodynamic data. As the most straightforward method of analysis, the use
of a summary statistic is the focus of this article and will be discussed in greater
detail below.

The summary measure approach

The use of the summary measurement approach has two main advantages. Firstly,
the analysis is easily interpreted because it is based on summary statistics that 
have been chosen because of their clinical relevance to the study objective [6]. 

Secondly, the analysis avoids the problem of correlation structure [5,6]. Once a
summary measure is constructed, the number of repeated measurements is
reduced to a single quantity for each subject. Therefore, values for different
subjects can be thought of as independent – a key requirement of most standard
statistical methods. 

Most importantly, the trial designer needs to think carefully about the questions
to be addressed to determine the best summary measure to use. Making the 
right decision before data are collected can lead to improvements in the design of
the trial.

Commonly used summary statistics

Some commonly used summary measures are summarized in Table 1. Their
applications and limitations are explained in the following sections. 

Mean

The simplest and most commonly used summary measure is the mean of the
response over time, since many clinical trials are most concerned with differences
in the overall treatment effect rather than more subtle effects. The mean is
particularly useful if the individual profiles show no clear pattern or trend with
time (see Figure 2 for a SBP profile). For the data in Figure 1, the mean SBP over
five visits for subject 6 is 143.2 mm Hg, whereas the mean SBP over four visits for
subject 10 is 137.0 mm Hg. 

Obviously, this method has a serious drawback: it does not take into account the
variability in response variable with time. For example, in Figure 1, there is a clear
downward trend in SBP for subjects 6 and 10 after drug administration, but the
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overall mean only describes the middle data point. In this case, the overall mean
is not an ideal statistic to use to represent the SBP over the course of the study. 

This method is also susceptible to outliers in the data (ie, a measurement might
be unusually high/low at one visit and consequently influence the overall mean).
For example, if the measurement at week 4 for subject 10 had been 168.0 mm Hg,
then the overall mean would have increased to 148.2 mm Hg. This would be higher
than the mean for subject 6, but would obviously not be representative of the
entire profile for subject 10.

Maximum 

Another easily interpreted summary statistic is the maximum value of the
response variable during the observation period. This can be used to assess the
maximum effect of a study drug in a trial or the maximum drug concentration in
a pharmacokinetic study. 

For example, in a study examining the immunological response to highly active
anti-retroviral therapy (HAART) in different age groups, the maximum CD4 
T-cell count over 31 months of follow-up was calculated for each subject
individually, and then summarized and compared between age groups [8]. The

Table 1. Summary measures for repeated measurements, their applications and limitations.

Summary measure Data type Application Limitations

Mean No clear pattern Use to describe the central Sensitive to missing information
or trend level of an outcome variable Ignores within-subject variation

when assessing drug efficacy 

Maximum Single peak Use to describe the maximum Sensitive to missing information
drug concentration in Sensitive to sampling time points
a pharmacokinetic study

Time to maximum Single peak Use to describe the speed Sensitive to missing information
of drug absorption in Sensitive to sampling time points
a pharmacokinetic study

Area under the curve Peaked or no Assess an overall extent Ignores within-subject variation 
clear pattern of drug concentration

Percentage of time  Multiple peaks Use when assessing the To get a stable estimate, many
the outcome variable or troughs fraction of time that the drug time points are needed
is above or below is effective for during the
a certain value study period, especially for 

pharmacodynamic studies

Number of occasions Multiple peaks Use to assess the frequency of To get a stable estimate,
on which the outcome or troughs fluctuations of pharmacodynamic many time points are needed
variable is above or parameters such as pH, blood 
below a certain value pressure, and heart rate

Rate of change Linear or Evaluate a rate of change in Coefficients are measured 
non-linear trend an outcome variable by fitting with varying levels of precision

a linear or non-linear model  depending on missing values
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maximum CD4 T-cell count was determined for four age quartiles. The median
maximum CD4 T-cell count by increasing age quartile was 500 × 106 cells/L, 
448 × 106 cells/L, 430 × 106 cells/L, and 419 × 106 cells/L (P < 0.0001), illustrating
that older patients had a lower maximum CD4 count and indicating a poorer
response to HAART. This result was consistent with the other results of the study
such as the maximum CD4 T-cell gain (251 × 106 cells/L, 246 × 106 cells/L, 
212 × 106 cells/L, and 213 × 106 cells/L, for increasing age quartiles [P = 0.0003])
and was still significant after adjustments for other variables influencing CD4 
T-cell response.

Time to reach the maximum

A statistic related to the maximum value is the time to reach the maximum. 
This is a measure of how quickly a subject responds to the drug. Although the
previous two statistics avoid the problem of correlation structure seen with
repeated measurement data, by reducing multiple measurements to a single index
correlation they are susceptible to missing observations. The missing values 
could be higher than the actual measurements that were recorded and could come
at earlier time points. If the time point at which the unknown theoretical
maximum value would be achieved is not selected in the design stage, inaccurate
estimates will be obtained for both the maximum value and the time to reach it
(see Chapter 13).
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Figure 2. Repeated measures with no clear pattern or trend for a subject that could be better summarized 

by a mean.

SBP = systolic blood pressure.
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In pharmacokinetic studies, the peak plasma concentration (C
max

) and the time to
achieve it (T

max
) are used to assess the speed or rate of absorption of a study drug.

C
max

and T
max

can be derived from a subject’s plasma concentration profile, 
as shown in Figure 3. The data in Figure 3 suggest that in this subject the study
drug has a very rapid absorption, reaching a peak of about 6.67 ng/mL in less than
an hour after administration.

Area under the curve

A method that makes use of all available response values, as well as the lengths 
of the time intervals, is an AUC approach (see Figure 3). Mathematically, 
AUC can be calculated for any time serial data in which an outcome variable is
observed at different time points (with equal or unequal intervals) by using the
trapezoidal rule, but it is particularly useful in situations where the total uptake 
of a drug concentration is of interest. The unit for AUC is the unit of drug
concentration multiplied by the unit of time, eg, for the AUC calculated from the
pharmacokinetic profile in Figure 3, the unit is hour.ng/mL. 
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Figure 3. Calculation of C
max

, T
max

, and AUC for a subject’s plasma concentration profile.

AUC = area under the curve; C
max

= the peak concentration of the drug in the body; T
max

= the time to reach the peak

concentration of the drug from dosing.
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In bioequivalence studies, C
max

and AUC are often used as primary endpoints to
assess bioequivalence between test and standard drug formulations, with respect
to the rate of, and extent of, absorption of a study drug. Like the mean, the AUC
does not take variability in response for a particular subject into consideration. 

When calculating an AUC by the trapezoidal rule, missing values are
conventionally treated in the following ways. If missing values occur before the
first or after the last observed response value, they do not contribute to the 
AUC calculation – in Figure 3, the plasma concentration is non-quantifiable
before 0.25 hours and after 8 hours. If the missing value occurs between two
observed data points, it is assumed that the outcome variable lies on a straight line
between these points. For example, in Figure 3 the drug concentration between 
4 and 6 hours is assumed to be linearly distributed. Various other methods can be
used to extrapolate missing values for different types of data, such as last
observation carried forward. Each method has its advantages in different settings:
for detailed information see Reference [9].

Percentage of time/number of occasions that a response variable 

is above/below a certain value

The use of percentage or number of follow-up measurements that are larger or
smaller (depending on the clinical relevance) than a prespecified value specifically
takes into account fluctuations in the response variable during the course of a
study. The former gives the fraction of time that an outcome variable is above or
below a clinically meaningful value, whereas the latter reflects the frequency of
fluctuation around this selected value during the observation period. These
summary measures are useful when there are many peaks and troughs in a
response profile with a very large number of time points. They are frequently used
in pharmacodynamic studies in which pH values or vital signs (eg, blood pressure,
heart rate, respiration rate) are recorded at small time intervals. 

For example, a blinded trial was conducted in healthy volunteers to determine
whether drug A was comparable to drug B in the suppression of gastroesophageal
reflux provoked by a standard meal, by using ambulatory esophageal pH
monitoring. The primary efficacy parameter was the percentage of time for which
the esophageal pH fell below 4, and the second efficacy parameter was the
number of occasions on which esophageal pH fell below 4. Figure 4 shows a pH
profile for a subject, in which the pH was recorded every 6 seconds over 4 hours.
For this subject, the percentage of time and number of occasions for which the pH
falls below 4 are 0.75% and 5, respectively.
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Rate or gradient of change in a response variable

The statistical approaches discussed so far mainly relate to data where the value
of the outcome variable under consideration fluctuates in the absence of a unified
monotonic trend for all subjects during the study period. Conversely, in situations
where the response variable increases or decreases steadily with time, eg, in the
case of growth data, it is possible to ask more detailed questions about how the
outcome variable changes with time. This can be done by calculating the slope 
(or regression coefficient) of the decline/increase for each individual and
comparing these slopes using standard techniques.

For the SBP data in Figure 1, most subjects show a trend towards decreasing SBP.
Therefore, a linear regression line can be fitted for each of the 10 subjects – the
fitted lines are displayed in Figure 5. The estimated slopes in the figure range from
–3.9 for subject 7 to –0.1 for subject 3, illustrating the different rates of change in
SBP for the subjects after drug administration. The change in SBP during the study
period was large for subject 7, dropping by 3.9 mm Hg on average at each visit,
whereas the change in SBP for subject 3 was much smaller. We can assess which
drug reduces SBP fastest by comparing the mean rates of the two treatment groups.

If the data are non-linear then a non-linear model should be fitted for each
subject’s data. For example, in a pharmacokinetic study to describe the rate of
elimination, a log-linear model is always fitted; the coefficient of the log-linear
model is used to describe the rate of drug elimination.

Figure 4. A pH profile for a subject taking part in a trial of a new drug for gastroesophageal reflux.
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Conclusion

The key issues when choosing which method of summary measure analysis to use are
the questions you wish to answer and the type of data collected. The summary
measures chosen need to have a clear clinical relevance and should be deduced at the
design stage. In most trials, more than one summary measure may be used to analyze
repeated measurement data, to address different aspects of the study question.
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Figure 5. A linear regression line for the systolic blood pressure (SBP) data for the 10 subjects receiving 

a drug for hypertension.

The numbering on the lines refers to the subject’s number in the trial.
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Multiplicity

Dorothea Nitsch, Duolao Wang, 

Tim Clayton, and Ameet Bakhai

In a clinical trial, information is often collected with multiple
endpoints and baseline variables. In addition, outcomes are
often measured at several different time points. It is tempting
to analyze this information by performing many statistical tests
such as comparisons of multiple endpoints, or undertaking
many separate subgroup analyses or comparisons of outcome
measures at several time points during the course of the study.
Consequently, the problem of ‘multiple testing’ or multiplicity
can occur where many statistical tests are performed, increasing
the probability of false-positive results (ie, the probability that
at least one result is significant at P < 0.05 by chance). In this
chapter, we discuss the issue of multiplicity in the context of
clinical research, and highlight some strategies for dealing 
with it.

■■❚❙❘ Chapter 29
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Introduction

The most simple randomized clinical trial involves the comparison of two
treatments with respect to just one outcome measure. In this case, the observed
data can be evaluated with a statistical significance test where a traditional
threshold for significance (such as P < 0.05) is chosen as evidence of a true
difference between the two treatments. The problem of multiplicity arises when 
a clinical trial is used to test several hypotheses simultaneously, rather than just 
a single test for a single hypothesis based on a single event outcome [1]. 

The key to understanding the problem of multiplicity is that we may consider 
a treatment effect to be statistically significantly superior to the control treatment
when indeed the difference arose by chance. This is called a Type I error 
(see Chapter 18). To elaborate, consider a randomized double-blinded placebo-
controlled clinical trial evaluating drug A for reducing systolic blood pressure
(SBP) among hypertensive patients. The null hypothesis is that there is no
difference in mean SBP between patients receiving drug A (μ

1
) and placebo (μ

2
)

(H
0

: μ
1

= μ
2
). The alternative hypothesis states there is a significant difference

between treatments (H
a

: μ
1

≠ μ
2
). 

If the null hypothesis is rejected due to a chance significant (false-positive)
finding, we say that a Type I error has occurred. For example, a Type I error has
occurred if we claim that drug A reduces SBP when in fact there is no difference
between drug A and placebo in the reduction of SBP. The probability of
committing a Type I error is known as the level of significance, denoted by α. 

This is traditionally set at α = 0.05 = 5%, suggesting that this scenario will occur
in one out of every 20 studies. 

If a statistical model is constructed for detecting the difference in a parameter
such as the mean between two identical populations (ie, no true differences), 
with a certain pre-set statistical limit α, then the probability of a Type I error 
will be increased as further tests are conducted using different samples from the
two same populations and the same limit α. In other words, the chance of finding
at least one significant result (overall Type I error) increases with the number of
tests, even though there are no true differences between the comparison groups.
For instance, assuming that all tests are independent, the probability of one of
them being spuriously significant is [1 – (1 – α)n], where n is the number of tests
(see Figure 1).

From this graph, we can see that if five such tests are performed, the Type I error
is increased to over 0.20. In other words, if five independent tests are used to test
null hypotheses that are in fact true using the significance limit of 0.05 for each

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 330



Clinical Trials: A Practical Guide  ■❚❙❘

331

single test, there is more than a 20% chance that at least one of these tests will
produce a P-value ≤0.05. If 10 such tests are performed, the Type I error is
increased to about 0.40; and with 14 tests, the likelihood is higher than 0.50. 

The above results suggest that the use of multiple testing with a critical
significance level based on a single test (“Do any of the statistical tests reach the
significance level of 0.05?”) is an inappropriate way of testing more than the
original null hypotheses. This suggests that results from the use of multiple testing
with a critical significance level based on a single test should be interpreted with
caution; approaches to this problem are discussed later in the chapter. Figure 1
also highlights that using a statistical tool developed for a single defined question
needs careful consideration when answers to more than one question are sought.
In general, however, tests will tend to be correlated and the probabilities of
making at least one Type 1 error may be expected to be less than those shown in
Figure 1 (see Figure 1 in Chapter 31 for simulation results).

Figure 1. The effect of multiple statistical tests on the overall Type I error rate. The chance of finding at least

one significant difference among different tests increases with the number of independent tests, even if there is

no significant difference by design.
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How does multiplicity occur in the setting of clinical trials?

Multiple endpoints

In contemporary practice, trials compare two treatments in terms of several
outcomes. This might be because we are keen to appreciate the impact of a new
treatment on several outcomes (such as mortality, disease incidence, and quality
of life) or because for some diseases there might not be a single dominant measure
of outcome. This is common in trials addressing chronic disease conditions such as
arthritis or neuropathy in which pain or joint mobility are the outcomes of interest.

An example of this problem can be found in a recently published trial in children
with osteogenesis imperfecta [2]. This disease is characterized by fragile bones,
which break easily. The trial evaluated olpadronate (a bisphosphonate) with
respect to its skeletal effects in children. There were three primary outcomes: 

• incidence of fractures of long bones 
• changes in bone mineral density and content 
• functionality 

It is clinically sensible to address this series of outcomes together, as no single
endpoint is sufficient to address the primary objective of the study. However,
caution is needed in the interpretation of the results since many separate
statistical tests may be needed.

Multiple endpoints also arise in studies of diseases that have major morbidity
outcome measures, such as the occurrence of a stroke, heart attack, or death;
outcomes commonly used in cardiovascular trials. 

Multiple treatments

The decision to evaluate multiple treatments, combinations of treatments, or
different doses of the same treatment within a trial with several parallel arms
almost always implies some form of multiple comparison study. An example might
be the simultaneous investigation of two treatments, both individually and in
combination, on the disease-free survival of postmenopausal women with early
breast cancer [3]. The number of possible treatment combinations increases rapidly
with the number of treatments, and so do the number of statistical tests performed. 

Repeated measurements

In many clinical trials, an outcome or marker measurement is recorded at
different time points for each subject, generating repeated measurement data. 
To analyze such data, a time-by-time analysis is sometimes used: group means 
are calculated at each separate time point, and separate statistical analyses are
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carried out at each of the time points (see Chapter 28). This also leads to the
problem of multiple comparisons and therefore increases the possibility of 
a false-positive result. 

Subgroup analyses

A clinical trial is usually concerned with the overall impact of a treatment on the
trial population. However, individuals within a trial population vary in their
characteristics. Common secondary analyses involve the investigation of whether
differences between treatments vary between different subgroups of the study
population. For example, we might test whether males or females benefit more
from a certain treatment, or specifically diabetic patients, or patients above a
certain age. Such analyses are called subgroup analyses. The statistical issues
related to these are complex and prone to confusion and often involve multiple
testing, in addition to the problem that trials are often not powered to detect
treatment differences amongst subgroups (see Chapter 23) [4].

Interim analyses

Interim analyses are usually undertaken during the conduct of a trial for ethical
and economical reasons, with the possibility that the trial might be terminated
early if significant treatment differences in efficacy or safety outcomes are found.
It is worth noting that successive analyses conducted on the growing body of trial
data will also lead to an increase in the overall Type I error rate at the final
analysis of the trial, unless adjustments are made (as discussed in the next section)
(see also Chapter 31). 

Strategies for dealing with multiplicity

Multiplicity needs to be considered at the design stage of the trial and when
writing a statistical analysis plan – before any analysis is undertaken. We discuss
three possible strategies for handling multiplicity in trials.

Change limits to P-values of single test

The first strategy is to plan a predefined correction for the inflated Type I error.
If the significance level for each individual test is reduced, then the overall level
of significance can be kept at 0.05 for the entire series of tests. There are different
types of statistical corrections that are based on this approach. 

A commonly used approach is the Bonferroni correction to the nominal significance
level [5]. The significance level of each subtest is set to be the overall significance
level divided by the total number of tests performed – eg, with five tests, the critical
level of significance for each of the five subtests is set at 0.01 (= 0.05 / 5) instead 

Clinical Trials: A Practical Guide  ■❚❙❘

333

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 333



❘❙❚■ Chapter 29 | Multiplicity

334

of 0.05. By performing such a correction, the probability that one or more of the 
tests will produce a statistically significant result if the null hypothesis is true 
is approximately 0.05, maintaining the traditional significance level. 

An example of this is seen in a multicenter trial of hormonal emergency
contraception for healthy women [6]. One part of the outcome assessment
included testing for differences in the occurrence of one or more side-effects
(nausea, changes in menstrual bleeding, headache, etc). In total there were 
10 side-effects that were potentially due to emergency contraception, giving an
adjusted significance level of 0.005. After Bonferroni correction, mifepristone was
still significantly associated with less and delayed menstrual bleeding compared to
levonorgestrel because the P-value obtained for this test was <0.0001, smaller
than the threshold for significance of 0.005. 

The Bonferroni correction is very conservative, ie, this correction assumes that
each of the outcomes tested is independent. The situation can arise where several
of the results are all less than P = 0.05 but, according to the Bonferroni
correction, the result would be nonsignificant. Under such circumstances, the
Bonferroni procedure will be an over-correction for multiple testing.

There are several other correction methods available for reducing the likelihood
of a Type I error, discussed in detail by Hsu [7]. There are also various statistical
amendments that can be made to the P-values in interim analysis. Three of the
most popular methods are the O’Brien–Fleming, Pocock, and Peto–Haybittle
rules (see Chapter 31) [8]. For example, the previously mentioned trial that
evaluated several treatments in postmenopausal women with breast cancer
planned one single interim analysis with an adjusted nominal P-value for interim
analysis of efficacy using a Peto–Haybittle stopping rule [9]. The Peto–Haybittle
stopping rule is similar to the Bonferroni rule in that it is very conservative – the
results of one or more repeated interim analyses with respect to efficacy are
interpreted as significant only if P < 0.001 [10]. 

Define the relative meaning of several outcomes 

A second strategy is to specify in the protocol the pattern of statistically 
significant findings in the individual response variables that will be taken as
conclusive for the study as a whole. For example, a trial might have many
endpoints (say six) measuring different aspects of disease outcome. In such a case,
it may be stated that statistical significance (at the 5% level) must be achieved on
the first two primary outcomes and on one of the remaining four primary
endpoints in order to allow the conclusion of a positive outcome to the trial. Such
an approach makes no formal correction for inflated overall Type I error, but it
avoids the possibility that an overall positive result will be interpreted from
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positive results on only one of several variables, thereby reducing the overall 
Type I error quite substantially. 

Just wait for the results and then decide

The last strategy is to do nothing to correct for inflated Type I error, to test each
comparison at the 5% level of significance, and, whenever appropriate, to add
cautions to the trial report warning of the potential effects of multiple testing [11].
The problem with this strategy is that it puts the burden on the reader to assess
whether any positive results generated from the trial are valid, or are likely to be
due to the spurious output of multiple testing. This approach can be attractive
when the outcome variables are expected to be highly associated, and can be used
as an alternative or as a supplement to the second strategy described above. 
The current practice of medical journals is not to demand any correction for
multiple testing. A balanced caution in the interpretation of the usually large
number of statistical tests performed is preferred to undue flexibility in suppressing
unexpected findings.

Specific strategies for dealing with several endpoints

Multiple endpoints exist in almost every trial. We will now discuss some 
specific methods based on the strategies mentioned above, which are used to 
deal with several endpoints. They all demonstrate that a possible loss of 
detailed information has to be weighed against a gain in terms of reducing 
false-positive findings.

Specify the priorities of the endpoints in advance

This approach is most commonly applied in clinical trials practice. One example
is the previously mentioned World Health Organization trial of emergency
contraception [6]. The trial protocol prespecified the sequence of planned analyses
and defined primary and secondary endpoints. The primary endpoint in this trial
was unintended pregnancy, and the secondary endpoints were side-effects due to
the various treatments. The main conclusion of the trial with respect to the primary
endpoint was that there was no evidence for a difference between the various
hormonal methods of emergency contraception with respect to unintended
pregnancies. As mentioned above, treatments differed in their side-effect profiles,
with less menstrual bleeding under mifepristone. The main conclusion was that all
studied regimes seem to be efficacious for emergency contraception.

Combine outcomes into a single summary statistic

A quality of life questionnaire is a classic example of a summary endpoint that
synthesizes a large amount of information into a single measure (score) of
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outcome. Patients answer a whole list of questions, and a summary measure
indicating their quality of life is then generated. This strategy is also useful in the
analysis of data with repeated measurements when a summary measure is derived
from those multiple measures. This summary measure is then used to evaluate a
possible treatment difference in a single statistical test. For example, the area
under the curve and peak value (C

max
) are often used as a primary endpoint in

bioequivalence studies (see Chapters 13 and 28).

Define a combined composite endpoint

Another strategy is to define a composite endpoint as the first occurrence of 
any of a list of several major events of interest. An example of this is the RITA
(Randomized Intervention Trial of Angina) 3 trial, which assessed an initial
conservative strategy (medical therapy) versus an initial interventional strategy
(angiography and subsequent revascularization, if indicated) in patients with
unstable angina or non-ST-segment elevation myocardial infarction (MI) [12]. 

The co-primary trial endpoints were the occurrence of the first of either death,
nonfatal MI, or refractory angina at 4 months, and death or nonfatal MI at 1 year.
The co-primary endpoints reflect major complications of unstable angina that the
treatment strategies aim to reduce. The interventional treatment prevented about
a third of these complications at 4 months compared to the conservative strategy.
However, caution is needed in interpreting the results as this difference was
entirely driven by a reduction in refractory angina, and there were few differences
between the groups in terms of deaths or nonfatal MIs.

Use a multivariate approach/overall hypothesis 

accounting for all the endpoints

A further problem that must be considered when dealing with multiple outcome
measures is that there can be a greater tendency for patients to have several
outcomes together than just one: so a patient avoiding a heart attack is also likely
to avoid a reduction in his quality of life. There are specific statistical methods that
adjust for such correlations between endpoints, while the capacity for clinical
interpretation of each component is maintained. 

One of these methods, the Wei–Lachin procedure [13], was used in a trial
investigating the effects of mitoxantrone in patients with multiple sclerosis [14]. 
In this trial, five clinical measures indicating the severity of multiple sclerosis
(changes of two different severity scores reflecting the disability of patients,
number of relapses requiring steroid treatment, time to first treated relapse, 
and changes in the standardized score of neurological status) were tested in one
overall hypothesis that the treatment affects all of those measures. 
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There were visible merits in using a multivariate approach in this trial, because all
five primary outcomes by themselves and as a whole gave a credible and consistent
answer in terms of an overall direction, indicating a benefit of treatment.
However, in situations where trials have uninformative or inconsistent results,
such a multivariate statistical approach with a possible borderline global result
might give controversial answers that have to be interpreted with caution, thereby
taking account of the clinical setting of the trial. In certain situations such
paradoxes may be natural, eg, if death is prevented then nonfatal events may
increase in frequency, such as disease flair-ups during the extended survival
period [15].

Conclusion

The basic principles of statistical testing apply to a single test of a single null
hypothesis. However, the problem of multiplicity or multiple statistical
comparisons is a common one in clinical research, arising when several
comparisons are undertaken from which to draw conclusions. Repeated or
multiple testing of different outcome variables or many different treatments
within the same trial will tend to increase the likelihood of finding a statistically
significant difference by chance alone, inflating the overall Type I error, which can
undermine the validity of the statistical analyses unless accounted for. 

There are several strategies with which to deal with the problem of multiple
testing – either at the design or at the analysis stage. A table of summary points is
provided (see Table 1). The simplest advice would be to design the trial by

Table 1. Different types of multiplicity and possible strategies for adjusting for multiplicity.

Type of multiplicity Possible strategies

Multiple endpoints Specify primary and secondary endpoints in advance

Define a summary statistic as an endpoint

Predefine meaningful composite endpoints

Choose a multivariate global test statistic

Use Bonferroni correction 

Multiple treatments Predefine priorities or use a global test statistic to test for any difference

Subgroup analyses Predefine a limited number of subgroups in the protocol to be analyzed
with interaction tests

Use Bonferroni correction if uncritical testing of many subgroups

Interim analysis Predefine P-values for efficacy that statistically account for the frequency
of interim analysis, with more stringent P-values for early analyses
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specifying the priorities of analysis in terms of primary and secondary importance,
and reducing the significance threshold if needed.
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Missing Data

Maurille Feudjo-Tepie, Christopher Frost, 

Duolao Wang, and Ameet Bakhai

Missing information is unfortunately common in randomized
controlled trials given that patients may miss visits, withdraw
from a trial, or data may be lost. Since it is impossible to avoid
missing some data, the challenges are: (1) to design a clinical
trial so as to limit the occurrence of missing data; (2) to control
or assess its potential impact on the trial conclusions. Targeting
the latter, in this chapter we discuss some of the problems
associated with missing data values, for simplicity focusing 
on situations where the response variable is continuous. Based
on data from a hypothetical trial, we illustrate some useful
ways of coping with missing data in longitudinal studies.

■■❚❙❘ Chapter 30
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What are missing data? 

In clinical trials, after treatment group assignment, each participant is scheduled
for follow-up, during which time the primary outcome and other variables will be
measured on at least one occasion. It is common for participants to miss some of
their scheduled visits. It is also common for information to be misplaced or not
entered, despite being collected successfully [1,2]. In both of these situations, 
we say we are faced with a missing data problem. 

Missing responses can be easily identified when the number of measurements per
participant is fixed (balanced study). However, in studies with varying numbers of
measurement visits per participant (unbalanced studies), it might not be possible
to identify some of the nonresponses (missing data) unless all scheduled
measurement occasions are strictly recorded. 

In some of the literature, unobserved latent variables and/or random effects are
also treated as missing data [3,4]. This is not the type of missing data considered
here. We are concerned with missing outcome variables, ie, measurements that
could potentially have been obtained. This is in contrast to latent or random
variables that could never have been observed.

What are the common types of missing data?

There are numerous reasons why data may be missing at the analysis stage. These
reasons can include the trial design (eg, if some participants miss some visits by
design, such as trial closure), loss of successfully collected information, and
participant refusal or withdrawal. While knowledge of these reasons is important,
the analyst is most interested in their potential impact on the results of the
analysis. This impact depends on the relationship between the process giving rise
to the missing data and other variables included in the analysis. 

Rubin gives a useful taxonomy and terminology, widely accepted, for the different
mechanisms that can generate missing data, based on their potential influence on
the results of an analysis [5]. He classifies three different types of missing data: 

• missing completely at random (MCAR)
• missing at random (MAR) 
• missing not at random (MNAR), also termed non-ignorable missing data
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In MCAR, the probability that a response is missing is completely unrelated to
both the observed information and the hypothetical response value that would
have been observed were it not missing. In MAR, the probability that a response
is missing depends on some or all of the observed variables and responses.
However conditional on the observed data, this probability is unrelated to the
hypothetical value that would have been observed were the data not missing. 
A process that is neither MCAR nor MAR is termed MNAR.

In practice, it might not be possible to state with confidence whether a particular
missing data mechanism is MCAR, MAR, or MNAR. However, this classification
is useful and if we can decide which assumption is most plausible then it provides
a good guide to the type of analysis that should be adopted to account for the
missing data.

What are the potential effects of missing data?

Three types of concern typically arise in the analysis of missing data [6]: 

• loss of efficiency
• complications in data handling and analysis
• introduction of bias

The importance of each of these is determined by the missing data mechanism
(MCAR, MAR, or MNAR) and the way in which the data are analyzed. For
example, if the missing data mechanism is MCAR then an analysis that excludes
participants with incomplete data will not introduce bias, but will not necessarily
be efficient. An analysis in which missing values are replaced with ‘plausible’
values (eg, by carrying forward the last observed measurement) might increase
precision, but might also introduce bias if the method for choosing the plausible
values is inappropriate. 

When the missingness is not MCAR, however, a simple analysis restricted to
participants with no missing values (completers), or even to all available data, 
can introduce serious bias – eg, if data were missing due to the side-effects of 
a drug causing participants to drop out. Indeed, with MAR and MNAR processes,
it is necessary to consider an analysis strategy that takes account of the influence 
of missingness process.

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 341



What are the commonly used strategies for dealing 

with missing data?

When the response is continuous, there are several commonly used strategies
available for handling missing data. We will consider these in four categories:

• analysis of complete cases only
• analysis of all available data without data replacement
• last observation carried forward (LOCF) and other ad hoc methods 

for replacing missing values 
• multiple imputations for replacement

Analysis of complete cases only

A complete case analysis involves analysis of only those participants who have no
missing values. When dealing with a process that is MCAR, such an analysis will
be unbiased. However, discarding data on participants with some missing values
can lead to a loss of efficiency. Molenberghs et al. point out that this loss of
efficiency can be particularly severe when there are a large number of
measurement occasions [7]. If data are not MCAR then an analysis of complete
cases will, in general, be biased [7].

Analysis of all available data

Analysis of all available data is generally preferable to analysis of complete cases.
Indeed, if the data are MAR (rather than MCAR) then a valid analysis can be
obtained through a likelihood-based analysis of all available data, ignoring the
missingness mechanism (provided that parameters describing the measurement
process are functionally independent of parameters describing the missingness
process [8,9]). 

Since an analysis of all available data can still generate unbiased parameter
estimates, researchers have coined MAR data as ‘ignorable missingness’. It
should, however, be borne in mind that the missing data can only be ignored if an
appropriate analysis is carried out. We describe such an analysis in a later section. 

Last observation carried forward

LOCF is another popular strategy, particularly when participants drop out, or the
trial terminates, on a set date (in contrast to intermittent missing values). Here,
the last observed value for a participant who drops out is carried forward to each
of the subsequent missed measurement occasions. The analysis that follows does
not distinguish between the observed and ‘carried forward’ data. 

❘❙❚■ Chapter 30 | Missing Data
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This approach is simple and easy to implement, but it is based on the assumption
that had the participant remained in the trial until completion, the participant’s
measurements would have remained exactly the same as at the time of dropping
out. A number of problems have been documented with this approach [7]. 
Time trends in the data, when combined with differential dropout rates between
groups, can introduce severe bias. This method also ignores the fact that, even if
a participant’s disease state remains constant, measurements of this state are
unlikely to stay exactly the same, introducing a spurious lack of random variability
into the analysis.

Other alternatives to LOCF are occasionally adopted: carrying forward the 
worst case, carrying forward the best case, or carrying forward the baseline 
value [10,11]. These methods have drawbacks similar to those of LOCF and we
therefore recommend that these strategies be used predominantly to conduct 
a sensitivity analysis. 

Multiple imputation 

LOCF and other strategies where previously observed values (last, worst, or best
observed) are carried forward to fill in the missing values belong to a class of methods
termed imputation methods [12]. They can be labeled nonparametric or data-based
imputation methods, as opposed to parametric or model-based imputation [13]. 

Parametric imputation involves replacing missing values with predictions from a
statistical model; in nonparametric imputation, the missing value is replaced with
an observed value. Provided that an appropriate statistical model is used (one that
takes account of the observed predictors and responses that are related to the
missingness mechanism) then parametric imputation can give rise to unbiased
parameter estimates under MAR. However, the fact that only a single imputation
of each missing value is made, and that there is no allowance for imprecision in
such imputations in the analysis, introduces spurious precision into the estimates. 

Multiple imputation can be used to take appropriate account of uncertainty in the
imputed values [8]. Provided that an appropriate model is used for imputation,
this approach can result in valid unbiased estimates under MAR. Horton and
Lipsitz present the multiple imputation method as a three-stage process [14]. 

• Firstly, sets of ‘plausible’ values for missing observations are created. 
Each of these sets is used to fill in the missing value and create 
a ‘completed’ dataset. 

• Secondly, each of these datasets is analyzed. 
• Finally, the results are combined, taking account of imprecision in parameter

estimates from each ‘completed’ dataset and variation between datasets. 
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Multiple imputation is now readily available in public domain software such as
SOLAS version 3.0 and above, SAS 8.2 and above, S-Plus, and MICE [15–18]. 
In the analysis of clinical trials, multiple imputation is most useful for dealing with
missing covariates. When it is only the outcome variable that is missing, a correctly
specified model for all of the available data will give similar results for less
computational effort. Multiple imputation is therefore rarely used for imputing
outcome variables in clinical trials.

Methods for MNAR data

Of the methods we have described, only a likelihood-based analysis of all the data
and multiple imputation are capable of producing valid, unbiased estimates if the
missing data are MAR. However, in practice, it is difficult to be certain that the
data are indeed MAR, and to exclude the possibility that the missingness
mechanism is MNAR. Unfortunately, when the data are MNAR we cannot ignore
the missing data process as with MAR, and none of the approaches we have
described will result in unbiased estimates. 

There have been suggestions for MNAR models – eg, Diggle and Kenward provide
such a modeling procedure for a continuous response [8]. However, such models
require strong and untestable distributional assumptions [8]. A pragmatic approach
is to make such models a component of a sensitivity analysis carried out to investigate
the robustness of results obtained using a plausible MAR-based analysis [7,9].

Comparison of different strategies for dealing with 

different types of missing data

In this section, we will use simulated data to illustrate patterns of missing data and
the consequences of using different analytical strategies.

The simulation model for the full dataset 

Consider a randomized controlled trial with 2,000 participants in each of two
treatment groups (A and B) and four follow-up visits, with the primary outcome
being the response at the final visit. For simplicity, let us say that the outcome
variable is not measured at baseline. Let us suppose that in group A, at the first
visit, the true mean level of the variable of interest is 150 units, and that this
increases by 10 units at each follow-up visit. 

Furthermore, suppose that in group B the true mean level is 10 units higher than
in group A at each follow-up visit, and that the correlation structure of the
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repeated measures is exchangeable with between- and within-subject standard
deviations both equal to 10 units. Formally, this model can be written:

R
ij

= 150 + 10V
2j

+ 20V
3j

+ 30V
4j

+ 10T
i
+ u

i
+ ε

ij

with u
i
∼ N(0,100) and ε

ij
∼ N(0,100)

where: 

• R
ij

= the response for the ith participant at the jth visit
• V

kj
= 1 if j = k and 0 otherwise

• T
i
= 1 if the ith participant is in group B and 0 if the ith participant 

is in group A

Using this equation, we simulated 4,000 participants to give a dataset (Dataset I).
Figure 1 shows the response profile of 20 randomly selected participants. 
Figure 2 presents the mean responses over visit by treatment, reflecting the
patterns described in the equation. 

Figure 1. Response profiles for 20 participants from Dataset I.
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Datasets with missing values

We derived a second dataset (Dataset II) from observations that were MCAR by
giving each participant a 20% chance of dropping out of the study before the
second visit (irrespective of response and treatment group). Participants attending
for the second visit were given a 20% chance of dropping out before the third visit,
and participants attending for the third visit were given a 20% chance of dropping
out before the final visit. 

Dataset III is an MAR scenario. All participants with an observed value >150 units
at the first visit were continued to the second visit, whilst all participants with an
observed value <150 units at the first visit were given a 60% chance of dropping
out by the second visit. Missing values were generated in a similar way at the third
and fourth visits: the cut-offs for determining participants at risk of dropping 
out were 160 and 170 units at the preceding visit, respectively. These data are
MAR because the probability of a missing observation is totally driven by the
observed data.

In contrast, Dataset IV is an MNAR scenario. All participants who would have
had an observed value <160 units at the second visit were deemed to be missing
at that and all subsequent visits. Similarly, all participants who would have had an

Figure 2. Mean response over visit (full dataset: Dataset I).
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observed value <170 units at the third visit were deemed to be missing at that and
the final visit, and participants who would have had an observed value <180 units
at the final visit were deemed to be missing at that visit. 

Table 1 presents the observed mean (standard deviation) response at each visit
and for each group, as well as the numbers of missing and non-missing
observations for each of the datasets. Figure 3 plots the proportion of missing data
at each visit. Different patterns can be observed for the different scenarios. 
For the MCAR scenario in Dataset II, the proportion of the data that is missing
at each visit is similar in the two groups. However, in Datasets III and IV, where
the chance of data being missing is related to the value of the responses (observed
responses in III, unobserved in IV) and where responses differ between the two
groups, clear differences are seen in the proportions that are missing in the two

Table 1. Four simulated datasets with different types of missing data.

Visit 1 Visit 2 Visit 3 Visit 4

Group Group Group Group

A B A B A B A B

Dataset I: no missing data

N 2000 2000 2000 2000 2000 2000 2000 2000

Missing 0 0 0 0 0 0 0 0

Mean 149.6 160.2 159.8 170.1 169.8 180.0 179.5 190.0

SD 14.2 14.4 14.2 14.2 14.0 14.1 14.3 14.1

Dataset II: missing completely at random (MCAR)

N 2000 2000 1624 1559 1320 1242 1037 971

Missing 0 0 376 441 680 758 963 1029

Mean 149.6 160.2 159.9 170.3 169.8 180.2 179.7 190.4

SD 14.2 14.4 14.2 14.3 13.9 14.2 14.0 13.9

Dataset III: missing at random (MAR)

N 2000 2000 1385 1701 1025 1494 795 1395

Missing 0 0 615 299 975 506 1205 605

Mean 149.6 160.1 162.2 171.7 174.3 182.9 186.1 193.5

SD 14.2 14.4 14.0 13.7 13.3 13.3 13.8 13.2

Dataset IV: missing not at random (MNAR)

N 2000 2000 992 1520 662 1262 473 1110

Missing 0 0 1008 480 1338 738 1527 890

Mean 149.6 160.1 171.3 175.9 182.1 186.8 193.8 197.5

SD 14.2 14.4 18.5 10.4 9.0 10.5 9.6 10.4
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groups. These patterns of missing data can help us to understand the underlying
mechanisms of missing data in the analysis of real clinical trials

Statistical analysis

Each of the four datasets was analyzed using three different methods:

• analysis of all available data
• analysis of complete cases only
• LOCF 

The model used in all the analyses was the same as that used in the generation 
of the full dataset, with the addition of interaction terms between visit and
treatment group so as to investigate potential interaction effects between visit 
and treatment caused by different missing schemes. Figure 4 presents the fitted
mean responses by treatment group and visit, whilst Table 2 presents the
estimated treatment effects (standard errors) at the final visit.
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Figure 3. Proportion of missing information by visit for different missing data scenarios.
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There are a number of observations from these results. Firstly, for MCAR
(Dataset II), the estimated treatment effects at the final visit are close to the true
value for all three approaches, as expected. The standard error for the analysis of
all available data is smaller than that from the analysis of complete cases only,
reflecting the fact that the complete case analysis discards informative data.
Despite the LOCF analysis leading to an underestimation of the mean levels in
each group at all visits other than the first, the LOCF analysis does give an
unbiased estimate of the treatment effect in this case. 

Turning to Dataset III (MAR), Figure 4 shows that only the analysis of all
available data gives rise to fitted response curves that are similar to those for the
full dataset (Figure 2). Table 2 confirms that this is the only method that results in
an unbiased estimate of the treatment effect at the final visit. It is important to
emphasize that such unbiased estimates at a particular visit are only obtained
when the linear mixed model is used to simultaneously model the outcomes at
each follow-up visit. 

Figure 4. Fitted visit-specific mean responses for four missing data scenarios and three analysis strategies.

LOCF = last observation carried forward.
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Analysis of all available data at the final visit in isolation would not yield unbiased
estimates. Analysis of completers only, whether through the repeated measurements
model or through simple comparison of means at the final visit (Table 1),
underestimates the treatment effect. The reason for this is that participants with
‘low’ levels tend to be lost to follow-up, and there are more such losses in 
group A. In contrast, LOCF overestimates the treatment effect because LOCF
takes no account of the general increase in levels with time, with this effect having
greater impact in group A, where there are more losses to follow-up, than in 
group B. 

Not surprisingly, when there is a large amount of MNAR data (Dataset IV), 
none of the methods provides a reliable estimate of the treatment effect. 

Conclusion

When some values are missing in a randomized clinical trial there are implications
for both efficiency and bias. The extent of the bias in the analysis depends very
much on the cause of missing data in the trial in question. In the absence of
specific knowledge about the reasons why data are missing, a graphical
exploration of the pattern of missing data is likely to give the analyst some hints. 

There is a large amount of statistical literature on the analysis of studies with
missing data. There is a growing consensus that ad hoc imputation methods such
as LOCF should be avoided. When data can reasonably be assumed to be MCAR
or MAR, unbiased methods of analysis do exist. In the latter case, it is usually
necessary to carry out an appropriate analysis of all the available data at all follow-

Table 2. Comparison of estimates of treatment effect for different missing data scenarios with three different

analysis strategies.a

aThe treatment effect is defined as the difference in mean response between groups A and B at the fourth visit 

as estimated from the mixed model analysis. The figures in brackets stand for the standard error of the treatment 

effect. LOCF = last observation carried forward; MAR = missing at random; MCAR = missing completely at random;

MNAR = missing not at random.

Missing schemes Datasets Strategy for dealing with missing data

All available data Completers only LOCF

No missing data I 10.4 (0.45) 10.4 (0.45) 10.4 (0.45)

MCAR II 10.4 (0.58) 10.7 (0.63) 8.9 (0.51)

MAR III 10.0 (0.58) 7.4 (0.56) 17.3 (0.60)

MNAR IV 5.6 (0.61) 3.6 (0.59) 18.3 (0.59)
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up visits in order to estimate unbiased treatment effects at a particular single visit.
Multiple imputation provides an alternative approach when data can be assumed
to be MAR. The situation is more complex when dealing with data that are MNAR.
The best that can be done in such situations is to investigate the robustness of the
results obtained using an MAR-based analysis with a sensitivity analysis. 
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Interim Monitoring 

and Stopping Rules

James F Lymp, Stephen L Kopecky, 

Ameet Bakhai, and Duolao Wang

Interim monitoring has, for a variety of reasons, become
increasingly important and common in clinical trials. Ethical
considerations require that patient safety be monitored and 
that decisions regarding treatment benefit, or lack thereof, 
be made as quickly as possible. However, care must be taken
not to jump to early conclusions based on limited evidence. As
a consequence, many statistical methods have been developed
for the design of clinical trials, and these methods account for
the interim monitoring process. In this chapter, we discuss the
motivations for interim monitoring, show how inappropriate
statistical methods can lead to erroneous conclusions, and
present an outline of some statistical methods that can be 
used for appropriate interim monitoring in clinical trials.

■■❚❙❘ Chapter 31
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What is interim monitoring?

The interim monitoring of clinical trials has become increasingly important 
and common for a variety of reasons. The reasons for monitoring might be 
ethical, scientific, economic, or a combination of these. 

Interim monitoring is the process of collecting and reviewing trial information
over the course of a clinical trial. This information includes patient safety data,
treatment efficacy data, logistics (such as patient accrual rates), and quality-
assurance information (such as the number of data-entry errors).

What are the main reasons for interim monitoring?

Potentially, the two main products of interim monitoring in clinical trials are 
a decision to stop the trial early or a decision to change the study protocol. 
The primary ethical reason for interim monitoring is to ensure patient safety.
Monitoring can help to:

• ensure that adverse event frequency and toxicity levels are acceptable
• ensure that patients are not recruited into a trial that is going to be 

unable to reach a definitive result
• ensure that randomization of patients is stopped as soon as there 

is sufficiently clear evidence either for or against the treatment 
being evaluated

• address unexpected problems with the study protocol such as exclusion
criteria delaying recruitment

The scientific reasons for interim monitoring are to improve the integrity of the
trial and, in situations where intervention has a stronger effect than expected
(either positively or negatively), reach conclusions early in the study. 

Interim monitoring is also beneficial economically because it can help trials to be
more efficient and prevent the use of resources on trials that either already have
reached, or are unlikely to reach, an answer.

Which trials should have interim monitoring?

In the US, according to federal regulations (21 CFR 312.32 (c) [1]), all clinical
trials need to be monitored for safety. However, there is no fixed rule for
determining which trials should be monitored for efficacy endpoints or quality-

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 354



Clinical Trials: A Practical Guide  ■❚❙❘

355

assurance purposes. It depends on the degree of severity of the condition being
treated, the toxicity level of the investigational intervention, and the duration of
the enrollment and follow-up periods. If the enrollment and follow-up periods are
too short, then interim monitoring for efficacy endpoints will not be useful
because the study will be completed before any decisions are made on the basis of
this monitoring. 

For every trial, the amount of interim monitoring should be determined as a result
of discussions between the investigators, the sponsors, and the regulatory bodies.
Monitoring may occur at regular time periods during the recruitment and follow-
up stages, or during enrollment on reaching certain proportions of target
recruitment (eg, 25% of target, 50% of target). These discussions should also
focus on whether an independent data and safety monitoring board (DSMB)
needs to be formed. The US Food and Drug Administration is currently drafting
DSMB guidelines, and these have been discussed previously.

What procedures are used for interim monitoring?

The first step is to determine the level of monitoring – that is, in addition to
monitoring for safety, deciding whether to monitor for efficacy, futility, or
secondary endpoints. The second step is to decide whether the monitoring will be
done by the trial investigators or by an independent DSMB. The monitoring
group then decides how frequently to meet and what data should be collected 
for discussion.

The DSMB can be treatment-blinded or be made aware of treatment allocation,
but always has to maintain complete confidentiality. Ususally, only the statistician
working with the DSMB has access to the treatment codes. 

As an example, consider a pivotal trial that is designed to compare a new drug
therapy with placebo and that has an accrual period of 3 years, a follow-up period
of 5 years, and survival as the primary endpoint. Due to the length and pivotal
nature of the trial, an independent DSMB would be involved. The DSMB might
decide to monitor laboratory measurements and adverse event reports to gauge
safety, and monitor survival rates in order to gauge efficacy and futility. The
DSMB might then decide to meet every 6 months from the start of accrual to
monitor for safety, and once every year to monitor for efficacy and futility.
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What statistical methods can be used for interim monitoring?

One issue that arises when monitoring a trial is choosing statistical analysis
methods for assessing the safety, efficacy, and futility endpoints. The primary
problem occurs when carrying out multiple hypothesis tests during the course of 
a clinical trial. In the usual hypothesis-testing situation, the Type I error (or false-
positive) – the rejection of the null hypothesis when it is actually true – is
controlled at some level of significance, typically 5%. The overall Type I error
level increases with the number of tests, as shown in Figure 1. For example, if the
5% level is used on two tests – one at the midpoint of the trial and one at the end
of the trial – the overall Type I error level is actually 9%. This means that in 9%
of trials with no treatment effect, the null hypothesis that there is no effect would
be falsely rejected. 

Figure 1. The effect of repeated statistical tests (on the same data) on the Type I error rate. The results are

based on 200,000 simulations of two groups of binomial data with a 50% chance of success in both groups 

and a final sample size of 100 per group. Equally spaced chi-squared tests were used. The graph shows 

that the greater the number of interim analyses carried out, the greater the chance of Type I errors.
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Figure 2 shows a plot of the test statistic over the course of a simulated study in which
there is no treatment effect. The test statistic could be many things, eg, the
standardized difference in means, the log odds ratio, or the log hazard ratio. 
Note that, in this simulation, the test statistic is above the two-sided 5% boundary
early in the trial. This trial might have been stopped prematurely if hypothesis testing
were done after each pair of patients.

The examples in Figures 1 and 2 highlight the need to exercise caution when
repeating statistical tests during the course of a clinical trial. Interim monitoring
therefore involves the problem of multiplicity risking a Type 1 error occurring (see
Chapter 29). There are many possible solutions to this problem. The most commonly
used solutions, and those that we focus on here, are group sequential methods. 
A thorough review can be found in Group Sequential Methods with Applications to
Clinical Trials by Jennison and Turnbull [2]. Other less common methods are based
on Bayesian statistics, decision theory, or conditional power analysis.

Figure 2. Variation of the test statistic with respect to time in a simulated clinical trial with no treatment effect.

The standardized normal test statistic is computed and plotted after each pair of patients in the trial.

Horizontal dashed lines are drawn at zero and at ±1.96, the two-sided 5% boundary for the test statistic.
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The most common group sequential methods currently in use are attributed 
to Pocock [3], O’Brien and Fleming [4], and Lan and DeMets [5]. For ease of
presentation, we will describe these methods for situations in which the test
statistic has a standard normal distribution. However, the methods are
generalizable to other settings.

Recall from Chapter 17, that for a significance threshold of P ≤0.05 the test
statistic value is 1.96. The Pocock method adjusts this critical value from the usual
value of 1.96 to some higher number that depends on the number of tests being
performed. The number is chosen so that the overall Type I error remains 5%
despite mutiple tests.

The Pocock method, although controlling the overall Type I error, creates a
situation in which the power to detect the true treatment difference at the end 
of a trial is reduced, and this reduction is greater with higher numbers of interim 

Figure 3. Standardized normal statistic two-sided 5% boundaries for two different group sequential methods in

a trial with five tests. The graph shows that the Pocock method more easily results in the early termination of

trials, while the O’Brien–Fleming method results in easier rejection of the null hypothesis at the end of the trial.
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tests. The O’Brien–Fleming method uses a conservative early approach that
addresses the issue of power at the end of the trial. In other words, some of the
Type I error is removed from the earlier tests and moved to the later tests. The
O’Brien–Fleming method also makes it more difficult to reject the null hypothesis
of no treatment effect early in the trial. Figures 3 and 4 illustrate these two group
sequential methods in a trial with four interim analyses plus a final analysis.

The Lan–DeMets method generalizes the Pocock and the O’Brien–Fleming
methods in two important ways. The Pocock and O’Brien–Fleming methods rely
on equally spaced intervals, in terms of number of patients, between tests. The
Lan–DeMets method, also referred to as an alpha spending approach, allows 
for unequally spaced intervals. As a consequence, the Lan–DeMets method allows
for differences between the planned and actual sample sizes during the course of
the study, and even unplanned analyses as well. While the Pocock method spreads
the Type I error equally throughout the study, the O’Brien–Fleming method

Figure 4. Sample P-values for two different group sequential methods in a trial with five tests. The graph

shows that the Pocock method makes it easier to stop a trial early and the O’Brien–Fleming method makes 

it easier to reject the null hypothesis at the end.
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places almost all of the Type I error on the final analysis. The Lan–DeMets
method is flexible enough to incorporate either of these approaches and also
allow for compromise between the two, depending on recruitment rates.

It is possible to use group sequential methods not only for treatment-difference
trials but also for equivalence trials, one-sided tests, and asymmetric boundaries. 
An example of an asymmetric boundary might be to use an O’Brien–Fleming 
method to monitor the benefit of the new intervention and a Pocock method for
monitoring detrimental effects of the new intervention. Different methods could
be used in the same trial to monitor different endpoints. For example, an
O’Brien–Fleming method might be used to monitor efficacy at the same time as
using the Pocock method to monitor safety.

What situations can drive early trial termination?

There are four main outcomes from interim monitoring:

• trial continues as planned
• trial continues with protocol amendments (more patients or centers, or

requests about details of adverse events for closer scrutiny or amendment
to inclusion/exclusion criteria due to unexpected observations)

• trial is halted temporarily for further safety data or for protocol
amendment and further training in the new protocol

• trial is stopped prematurely and permanently due to early divergence 
of treatment effects (either in favor of or against the new treatment)

Interim monitoring allows the DSMB to evaluate whether a divergence of event
rates between groups is occurring. This divergence usually has to be present for
two consecutive interim analyses. It will then result in early trial termination to
avoid further disadvantage to patients in the higher event rate group. If the DSMB
is blinded then the higher event rate may or may not be in favor of the new
treatment. If the DSMB is unblinded then they will know if the new treatment has
greater benefit or not. For example, the BHAT (Beta-blocker Heart Attack Trial)
was terminated 9 months early, mainly because the observed treatment benefit
with beta blockers was judged significant and likely to remain so during the 
9 months remaining in the trial [6]. 

Similarly, if a new treatment is unlikely to be superior, ie, there is no curve
divergence some way through the trial, the trial may be stopped under futility
rules since it is unlikely to have future benefit if the drug effect is supposed to be
demonstrated in the first few months. CARET (Beta-Carotene and Retinol
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Efficacy Trial) was such an example [7], where at the second interim analysis the
cumulative incidence of lung cancer was higher in the active treatment arm than
in the placebo group. This led to the DSMB and steering committee recognizing
the extremely limited prospect of a favorable overall effect.

In addition, if serious adverse event rates are unacceptably higher in the new
treatment group than in the control group, the trial may be terminated or
suspended until protocol modifications can be instituted. A trial by the Medical
Research Council Lung Cancer Working Party (MRC LU16) was stopped because
the interim analysis showed that although the palliative effects of treatment were
similar in the treatment groups, there was increased hematological toxicity and
significantly worse survival in the study treatment (oral etoposide) group [8].

Furthermore, the DSMB can also recommend extending (longer follow-up) or
expanding (increasing numbers of patients recruited) the trial if the projections
suggest a more definitive result will only arise with this amendment. This may
occur if the assumed event rates in the control group are not met; either due to
recruitment of a low risk group, or because medical advances in such a patient
group have improved morbidity beyond the expectations of such patients when
the power calculations for the trial were originally performed, or if dropouts are
higher than expected. Finally, if similar large trials report conclusively then it
might be unnecessary and unethical to continue the current trial. The DSMB is,
therefore, very critical to the success of a trial.

Conclusion

Interim monitoring is a critical part of clinical trials research. The benefits of
interim monitoring and appropriate statistical analysis methods are to increase
the ethical, scientific, and economic value of clinical trials for patients,
investigators, and sponsors alike. For this reason it is of key importance that
members of the DSMB be chosen wisely and have sufficient expertise, knowledge,
and independence to be able to make tough decisions about trial progress.
Further information on data monitoring and interim analysis can be found in
references [9] and [10].
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Overview of Reporting

Dorothea Nitsch, Felicity Clemens, 

Duolao Wang, and Ameet Bakhai 

In order to interpret the findings of a clinical trial, the reader
has to understand the rationale for and the conduct of a clinical
trial, and whether and how the findings relate to further clinical
practice. The phrase ‘clinical trial’ encompasses a whole 
range of defined processes that are not necessarily familiar 
to a reader of a clinical trials report. Therefore, a report of 
a clinical trial should include information about exactly how 
the trial was conducted and how this might affect the results. 
The CONSORT (Consolidated Standards of Reporting Trials)
statement is the standard guide for clinical trials reports 
in medical publications. In this chapter, we explain the 
key features of the CONSORT statement.

■■❚❙❘ Chapter 32

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 365



❘❙❚■ Chapter 32 | Overview of Reporting

366

Different types of reports

A well-written clinical trial report is the sound basis of passing on research
findings. The most cited forms of research reports in academic life are those in
medical journals and conference presentations. However, equally important in the
medical field are regulatory submissions for new therapies or press releases for
the lay public. As with any written description of past work, the focus and style of
a report should be tailored to the audience in such a way that its results are
correctly understood. Perhaps the most difficult form of reporting is a press
release, which targets the general lay audience. While aiming to be simple it
should not promote over-interpretation of the findings, which the media
commonly encourages for news value.

Structure and quality of a clinical report

The purpose of any report of a clinical trial is to clearly convey a very few key
points or ‘headline findings’ based on the main aims of the study; these should be
borne in mind throughout the write-up as the main thrust of the report should
focus on these key points. Before starting to write a report the author should think
about the reasons for writing that particular report and its audience/readership. 

At the stage of writing a clinical research report, the aim of the study and the
research hypothesis have usually been sufficiently clarified. The style of the report
must be tailored to the audience for which it is intended while still ensuring that
the ‘headline findings’ of the trial are conveyed in a clear and accurate way. 
For example, is it a press release aimed at enhancing public knowledge of the
results? Is it a regulatory submission aiming to get a new treatment licensed? 
In the latter case there are usually clear guidelines about the requirements and
format of the reporting laid out by the regulatory authorities, which can be
accessed via their websites. Reports for interim analyses with the data and safety
monitoring board should also meet regulatory standards.

In this chapter, we focus on writing a clinical trial report for a medical journal. 
The audience of a report depends on the journal that is chosen for publication.
Hence, the language should be adapted in such a way that the journal’s readership
should be able to grasp the methodology of the study and its results.

The commonly accepted format of a trial report is an introduction and literature
review, followed by methods, results, discussion, and a conclusions section. An
abstract should precede the introduction and a comprehensive list of references
should follow the conclusions. Acknowledgment of all trial personnel and
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investigation at each center may either be at the end of the paper or available on
the journal or trial website.

The format follows the key questions: 

• Why did you perform the trial? (Introduction) 
• How did you conduct the trial? (Methods) 
• What did you find? (Results) 
• What does it mean? (Discussion) 

In its introduction a trial report should give sufficient background knowledge for
the reader to understand the study aim and the hypothesis of interest; it might
include an overview of relevant literature and how the proposed study will
improve the situation. 

The methods section of a trial report should contain sufficient information on the
study design, data collection, and statistical analysis to allow critical interpretation
of the results. An important criterion of a good quality report is that its methods
should be laid out in such a way that the intended reader is able to critically
appraise the value of the results.

The results section should contain baseline tables to describe the features of the
study population at entry to the study, further information on completeness of
follow-up, and results with respect to treatment efficacy and side-effects. The
discussion should aim to put the findings into the context of current research, 
and highlight potential questions for further research. Any intended reader with
sufficient background knowledge should be able to infer the conclusions on the
basis of the results presented.

In other words, the methods and results should be presented in such a way that 
a reader is enabled to critically draw conclusions; for nonspecialist readers there
is a danger of accepting the results of studies without sufficient criticism on the
potential limitations of the study findings. For this reason, in the setting of clinical
trials, the CONSORT (Consolidated Standards of Reporting Trials) statement 
has been elaborated, and has been adopted by many leading clinical journals as 
a common standard for reporting. 

The abstract and the conclusions section of a trial report can be seen as the
interface between two groups of people: the trialist, with his/her specialist
knowledge of the clinical area and the mechanics, processes, and results of the
trial itself; and the audience, which might comprise specialist medical readers or
the general lay public. As such, these sections must carefully guard against
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misinterpretation of the results whilst being tailored to the needs of the target
audience – a task that requires great care.

Interpreting a trial report

There are two distinct forms of validity of a study: internal and external validity.
Internal validity is defined as the ability of a trial to study the hypothesis of
interest. External validity is the generalizability of the study findings, ie, the extent
to which the results can be applied to clinical practice. 

Internal validity

Internal validity is concerned with study design and conduct. The study design is
chosen in such a way that biases and errors are minimized. These include systematic
errors, confounding, and random errors; in clinical trials, the randomization and
selection procedures aim to ensure a lack of confounding and selection bias. 

Key factors are a randomization scheme with masking so that neither doctors nor
patients are aware of the participants’ intended allocation, as well as blinding to
the treatment allocation during follow-up. False-negative and false-positive
findings due to random error can be avoided by choosing a sufficiently large study
population (see Chapter 9). Study size and statistical analyses should be chosen
with reference to the hypothesis of interest.

External validity

External validity is a function of the selection of the study population, treatment
regimens, and outcome measures. The study population should represent the
population that is intended to receive the treatment in the population at large,
should there be a positive result. Treatment regimens should be practicable and
relevant to clinical practice. Outcome measures should reflect measures of clinical
interest (ideally these should be hard outcomes, such as mortality or morbidity) 
or at least routine measurements that apply to clinical practice. Since diagnostic
criteria and treatment guidelines change over time, it is essential that the 
reader understands the context of the study with respect to current and past
clinical guidelines, and clinical practice.

Sufficient information

All of the above points should have been clarified during the planning of the trial.
Large clinical studies often publish a study design paper early in the process,
where the rationale, assumptions, and study design are laid out in detail. However,
the interpretation of a trial report relies on the reader’s ability to identify potential
limitations in the design and conduct of a trial. Therefore, any clinical report
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incorporating results should still contain sufficient information for the reader to
judge key points of internal and external validity. The CONSORT statement
provides a checklist to help authors cover all the relevant points (Table 1). 

CONSORT Statement

The CONSORT statement has been very influential in providing a standard for
the quality of a clinical trial report in medical publications. A full explanation can
be found on the CONSORT website, which is freely accessible [1]. In this section,
we highlight key points of the CONSORT statement.

In order to enable the reader to evaluate the flow of patients through a study, 
a flow chart (as shown in Figure 1 of Chapter 33 of this book) is a helpful graphical
summary. A checklist provided by CONSORT (Table 1) describes several items
that should be included when reporting a clinical trial. Items 1–14 and 16–18
relate to the internal validity of the study, while items 2–4, 6 and 15 are
particularly important to address the generalizability of the findings; these should
be highlighted by the authors themselves, as mentioned in item 21. 

Randomization

Randomization is essential to ensure that there is no confounding. Hence, it
should be mentioned in the title and abstract of the study (item 1), and further
explained in detail in the methods (items 8–10). Different randomization schemes
can be used depending on the numbers of patients allocated to a particular
treatment in different study centers. Reporting the method of allocation
concealment and its implementation helps the reader to identify potential
problems in masking and blinding (item 11). 

Sample size

A trial needs to include sufficient numbers of patients in order to detect the effect
of interest (item 7). The sample size calculations depend on the form of the
planned statistical analysis and on making reasonable assumptions about the
expected treatment effect, summary statistics of the primary endpoint in the
control group, etc (see Chapter 9). 

Defined outcome

Statistical analyses are tailored to a defined hypothesis of interest (item 5 and 12).
If statistical analyses are used for hypotheses other than those originally planned
then there is a danger of false-positive chance findings. Therefore, the primary
outcome has to be defined in advance (item 6). 

Clinical Trials: A Practical Guide  ■❚❙❘
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Table 1. Checklist of items to include when reporting a randomized trial.

Continued.

PAPER SECTION and topic Item Description

TITLE & ABSTRACT 1 How participants were allocated to interventions (eg, ‘random allocation’,
‘randomized’, or ‘randomly assigned’).

INTRODUCTION
Background 2 Scientific background and explanation of rationale.

METHODS
Participants 3 Eligibility criteria for participants and the settings and locations where 

the data were collected.

Interventions 4 Precise details of the interventions intended for each group and how 
and when they were actually administered.

Objectives 5 Specific objectives and hypotheses.

Outcomes 6 Clearly defined primary and secondary outcome measures and, when
applicable, any methods used to enhance the quality of measurements 
(eg, multiple observations, training of assessors).

Sample size 7 How sample size was determined and, when applicable, explanation 
of any interim analyses and stopping rules.

Randomization – 8 Method used to generate the random allocation sequence, including 
sequence generation details of any restrictions (eg, blocking, stratification).

Randomization – 9 Method used to implement the random allocation sequence (eg, numbered 
allocation concealment containers or central telephone), clarifying whether the sequence was

concealed until interventions were assigned.

Randomization – 10 Who generated the allocation sequence, who enrolled participants, 
implementation and who assigned participants to their groups.

Blinding (masking) 11 Whether or not participants, those administering the interventions, 
and those assessing the outcomes were blinded to group assignment. 
When relevant, how the success of blinding was evaluated.

Statistical methods 12 Statistical methods used to compare groups for primary outcome(s); methods
for additional analyses, such as subgroup analyses and adjusted analyses.

RESULTS
Participant flow 13 Flow of participants through each stage (a diagram is strongly recommended).

Specifically, for each group report the numbers of participants randomly
assigned, receiving intended treatment, completing the study protocol, 
and analyzed for the primary outcome. Describe protocol deviations from
study as planned, together with reasons.

Recruitment 14 Dates defining the periods of recruitment and follow-up.

Baseline data 15 Baseline demographic and clinical characteristics of each group.

Numbers analyzed 16 Number of participants (denominator) in each group included in each
analysis and whether the analysis was by ‘intention-to-treat’. State the
results in absolute numbers when feasible (eg, 10/20, not 50%).

Outcomes and 17 For each primary and secondary outcome, a summary of results for each group,
estimation and the estimated effect size and its precision (eg, 95% confidence interval).

Ancillary analyses 18 Address multiplicity by reporting any other analyses performed, including
subgroup analyses and adjusted analyses, indicating those prespecified 
and those exploratory.
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Allocated treatment

In order to avoid bias and preserve the purpose of randomization, analyses should
be carried out by allocated treatment and not by received treatment (item 16). 
In pharmaceutical trials, statistical methods are usually predefined in protocols
before the onset of the trial. This ensures that analyses are chosen prior to
obtaining data, and not on the basis of significant post-hoc findings after receiving
the data (item 12 and 18).

Coherence and clarity

Results should correspond to the methods section. Comparison of the flow chart
and the methods section will inform the reader of the success of the study design
with respect to enrollment, allocation, and completion. Baseline data are informative
with respect to the success of randomization (item 15), and a table showing adverse
reactions might explain reasons for dropout (item 19). Results of analyses should
be displayed clearly, as outlined in the methods section (items 16–18). 

If a trial report follows the guidelines outlined in the CONSORT statement then 
a critical reader should arrive at an interpretation of results similar to that of the
authors (item 20). External validity is more difficult to judge for a reader who is not
familiar with clinical implications and recent research in the field; however, even
an informed reader will need information on eligibility criteria and interventions
(items 3 and 4), the features of randomized patients (item 13 and 15), and timing
of recruitment and follow-up (item 14) to judge the applicability of the results to
practice. Authors themselves should discuss generalizability and interpret the
results in light of the overall evidence (items 21 and 22).

Table 1 contd. Checklist of items to include when reporting a randomized trial. 

Reproduced from the CONSORT Statement (www.consort-statement.org).

PAPER SECTION and topic Item Description

Adverse events 19 All important adverse events or side-effects in each intervention group.

DISCUSSION
Interpretation 20 Interpretation of the results, taking into account study hypotheses, 

sources of potential bias or imprecision, and the dangers associated 
with multiplicity of analyses and outcomes.

Generalizability 21 Generalizability (external validity) of the trial findings.

Overall evidence 22 General interpretation of the results in the context of current evidence.
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Problem areas in trial reporting: examples

Randomization

The idea of correct randomization to ensure an unbiased comparison is very old.
However, its importance was not acknowledged in early trial reports. According
to a review in 1990, a third of published trials provided no clear evidence that groups
were randomized [2]. Indeed, there were indications of post-hoc assemblies of
groups, with some trials using simple randomization schemes, often with too
similar sample sizes in both groups than would be expected by chance.
Furthermore, in about 40% of published trials from this time the baseline
comparisons were inadequately handled [2]. 

Intention-to-treat analysis

A survey in 1999 showed that only 50% of trial reports mentioned ‘intention-to-
treat’ analysis [3]. This can have serious implications on the interpretation of the
results. For example, in a trial comparing medical and surgical treatment for stable
angina pectoris, some patients allocated to surgical intervention died before being
operated on [4]. If these deaths are not attributed to surgical intervention using an
intention-to-treat analysis then surgery will appear to have falsely low mortality.

Publication bias

Until recently, medical literature was dominated by a bias towards reporting very
significant positive effects or very large point estimates, but avoiding trials with
neutral or negative results. This led to distorted views – an effect known as
publication bias [5]. The scientific community is changing and now encourages 
the publication of all trials. This is of particular relevance in meta-analyses, 
which seek to support external validity against other studies.

Effect sizes

Care should be taken in examining effect sizes. Effect sizes are sometimes reported
in such a way that the treatment effect seems massive. For example, a trial of
cholestyramine (a lipid-lowering drug) in men with high cholesterol reported a
17% relative reduction in risk for both fatal and nonfatal coronary events, whereas
the absolute risk difference was only 1.7%. Because this study incorrectly used
only one-sided tests, there remains uncertainty about the real effect of
cholestyramine [6].

Changes to regulatory definitions/guidelines

As mentioned earlier, regulatory definitions or guidelines might change during
the course of a trial. For example, the RITA (Randomized Intervention Trial of
Angina) 3 trial used a different definition of myocardial infarction from that
published some years later by the European and US cardiology societies [7]. 
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The RITA 3 trial was set up to investigate the policy of early intervention versus
conservative medical management in unstable angina. During the follow-up of the
trial, the definition of myocardial infarction changed. Therefore, the investigators
carried out two analyses: one using the original trial definition of the endpoint
myocardial infarction, and another using the new definition. This approach
explained some discrepancies in estimated effects of previous and contemporary
trials in the field [7]. 

Incorrect reporting

We discuss examples related to testing more than one outcome or testing for
multiple subgroup effects in more detail in other chapters of this book (see
Chapters 23 and 29). Particular examples related to incorrect reporting can be
found in Pocock et al [8]. The description and discussion of inclusion criteria and
trial procedures are particularly important to judge external validity. This field in
particular has sparked many discussions and is probably a factor for the relatively
low adherence to guidelines found in clinical practice [9]. The tension between
treating a single patient who might or might not correspond to the inclusion
criteria of a particular published trial is difficult to solve. 

Prerandomization run-in 

Additionally, prerandomization run-in periods can lead to a distorted picture.
Active run-in periods in which patients are excluded if they have adverse
outcomes are likely to invalidate the applicability of the trial to the clinical
situation. For example, trials examining carvedilol in the setting of heart failure
excluded up to 9% of patients in the run-in period because of adverse events
(some of which were fatal), with subsequent much lower complication rates
postrandomization than in the run-in phase [10,11]. 

Press releases

The requirements of a press release are different from those of a publication in a
medical journal. The key findings and overall structure of the report must be the
same – however, the style in which they are conveyed is different. The audience
consists of the general public, so press releases should avoid technical jargon or
extensive explanation of the processes of the study. The report must also be very
careful not to over-emphasize the clinical significance of the findings and to make
sure that the study population is explicitly stated. Short sentences should be used,
and graphs should be avoided altogether. Percentages may be quoted, but their
denominators should also be explicitly given; other measures of effect, such as
odds ratios, should be explained in words. Some statement should be made about
the power of the study, again avoiding technical jargon. It is useful to give some
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estimate of the overall prevalence or incidence of the condition of the study, and
the possible public health impact of the trial’s results, but this should avoid
extrapolation from the study population to the population at large. Finally, the
title of a press release must always reflect the key findings of the trial.

The danger of over-simplified information cannot be over-estimated. An example
highlighting the problem of imprecise global information uptake by health care
providers and patients can be found in RALES (Randomized Aldactone Evaluation
Study) [12,13]. This study published beneficial findings of spironolactone in 
heart failure. Spironolactone was used prior to this trial, mainly in dosages of
100–300 mg/day in patients with liver cirrhosis. In contrast to patients with heart
failure, patients with liver cirrhosis are unlikely to receive angiotensin-converting
enzyme (ACE) inhibitors concomitant with spironolactone, and are therefore at a
much lower risk of developing hyperkalemia with large doses of spironolactone. 

When the results of RALES became available, large doses of spironolactone were
prescribed to heart failure patients in conjunction with ACE inhibitors without
adequate monitoring of potassium, despite the fact that the spironolactone dosage
in the trial ranged from 25 to 50 mg/day with close potassium monitoring
according to the trial protocol. Hospitalizations of patients due to life-threatening
hyperkalemias rose massively and, in contrast to the predicted effects of the
RALES trial, the rates of readmission for heart failure or death from all causes
did not decrease after publication of the trial results. 

Conclusion

Clinical trial reports should be concise and understandable. They are usually
targeted at a medically trained reader, which implies that the reader may not be
an expert on statistical issues that are implicit in trial design and analysis, however
the report should clarify the assumptions and methods behind these issues. The
CONSORT statement is helpful in outlining the main points of a report that have
to be covered in order to ensure a correct and critical interpretation and
presentation of the results. 

By following such international guidance on publications, reports provide
sufficient information in a concise manner, allowing the presented results to be
scrutinized fully, and helping clinicians to decide how best to translate the findings
into practice.
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Trial Profile

Duolao Wang, Belinda Lees, and Ameet Bakhai

The use of a trial profile or flow chart is now considered to 
be essential for the reporting of randomized controlled trials. 
It allows the reader to determine the number of participants
randomly allocated, receiving the intended treatment,
completing the study protocol, and analyzed for the primary
outcome. In this chapter, we describe the content of a trial
profile, illustrate its use in the reporting of randomized
controlled trials with different designs, and look at the current
practice of major medical journals on the use of trial profiles.

■■❚❙❘ Chapter 33
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What is a trial profile?

A trial profile diagrammatically summarizes the flow of participants through 
each stage of a randomized controlled trial. A flow chart is recommended to
display this information clearly. The CONSORT (Consolidated Standards of
Reporting Trials) guidelines for reporting parallel-group randomized controlled
trials state that researchers should use a trial profile “specifically for each study
population and report the numbers of participants randomly assigned, receiving
intended treatment, completing the study protocol, and analyzed for the primary
outcome.” Deviations from the planned study protocol should also be described,
and reasons given [1].

What should be included in a trial profile?

Figure 1 shows the template recommended by CONSORT for the reporting of the 
flow of participants through each stage of a randomized trial. Essentially, a trial
profile consists of five components: 

1.  Enrollment. Ideally, this should include the number of patients screened for
inclusion into the trial; this will allow the reader to determine whether the
participants are representative of all patients seen with the disease. 

2.  Randomization. The number of participants fulfilling the inclusion and
exclusion criteria, and the number randomly allocated to a treatment arm
should be given. This allows the overall size of the trial to be determined and
enables the reader to see whether the study uses an intention-to-treat analysis.

3.  Treatment allocation. This is the number of participants allocated to each
group who actually receive the treatment. The reasons for not receiving
treatment after randomization as allocated should be given, such as withdrawal
of consent by the subject.

4.  Follow-up. This is the number of participants who completed follow-up as
allocated by treatment arm. Reasons for not completing follow-up or treatment
should be given.

5.  Analysis. The number of participants included in the analysis should be given
by study group, with reasons for excluding patients.

Since a trial profile gives only a brief summary of the flow of participants, a text
description is sometimes also given in a report to provide further information on
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the conduct of the trial. For instance, the date the trial started and stopped, 
and the duration of follow-up are often described in the text. Also, since the
numbers of participants included in the efficacy and safety analyses are often
different, the report should give descriptions of the efficacy and safety populations.

What is the purpose of a trial profile?

A trial profile is a clear way of showing whether or not the participants received 
the treatment as allocated (and if not, why not), and also whether they were lost
to follow-up or excluded from the analysis. This is important because patients who 

Figure 1. The CONSORT flow chart. Template for reporting the flow of participants through each stage 

of a randomized controlled trial [1].
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are excluded after allocation and are not available for follow-up (eg, because of a
side-effect of treatment, or worsening of the disease process) might not be typical
of the other participants in the study and this can bias the results. The trial profile
will allow the reader to determine whether an analysis is intention-to-treat – 
ie, whether the analysis has been performed on all those patients who were
randomized to the group they were originally allocated to (regardless of their
subsequent treatment) or only on those who completed the entire study (per
protocol analysis).

It might be necessary to adapt the flow chart to suit the needs of a particular trial.
For example, there may be a large number of patients who do not receive the
allocated treatment as planned, so that the box describing treatment allocation
would need to be expanded to describe the reasons for this and the number of
patients for each reason (categorized into broad divisions if needed).

Examples of trial profiles

In this section, three trial profiles from published studies with different trial designs
will be described: a two-way parallel design, a 2 × 2 factorial design, and a two-way
crossover design. Although the CONSORT guidelines on trial profiles were designed
for reporting parallel-group randomized controlled trials, the profile can be adapted
to describe the flow of participants in factorial and crossover design trials. 

❘❙❚■ Chapter 33 | Trial Profile

380

Figure 2. Trial profile for a parallel design study investigating the use of Mycobacterium vaccae in the

treatment of pulmonary tuberculosis (TB) [2].

484 eligible patients

110 excluded

10 excluded

• 1 did not 

have TB

• 9 resistant

organism

17 excluded

• 1 did not 

have TB

• 16 resistant

organism

185 received 

placebo

175 analyzed for 

primary endpoint

189 received 

vaccine

172 analyzed for 

primary endpoint

374 randomized

Reprinted with permission from Elsevier (Lancet 1999;354:116–19).
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Two-way parallel design

Figure 2 shows a trial profile from a two-arm parallel design study. The study
investigated whether the time to achieve a negative sputum culture among
patients with newly diagnosed tuberculosis would be decreased by adding
Mycobacterium vaccae to standard short-course anti-tuberculosis chemotherapy.
Patients were randomized to an injection of either saline (placebo) or
Mycobacterium vaccae [2]. This is an example of a trial profile in which the
information on all five of the components of trial execution is clearly provided.
The profile indicates that 175 patients from the placebo group and 172 patients
from the vaccine group were used for the primary endpoint analysis. However,
safety analysis was based on 185 placebo patients and 189 vaccine patients. The
reasons for this discrepancy are described in the report [2].

2 × 2 factorial design 

Figure 3 illustrates a 2 × 2 factorial study, which can be reported as a four-arm
parallel trial. This study investigated the effects of vitamin E or n-3 polyunsaturated
fatty acid (PUFA) supplementation in patients who had suffered a recent
myocardial infarction [3]. The primary combined efficacy endpoint was death,
non-fatal myocardial infarction, and stroke. From October 1993 to September

Figure 3. Trial profile for a factorial-design study investigating the use of vitamin E and n-3 polyunsaturated

fatty acid (PUFA) supplementation in patients suffering a recent myocardial infarction [3].
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11,324 patients randomized

2,836 given 

n-3 PUFA

2,830 given 

vitamin E

2,830 given n-3 PUFA

plus vitamin E
2,828 controls

2,836 analyzed 

for outcomes

2,830 analyzed 

for outcomes

2,830 analyzed 

for outcomes

2,828 analyzed 

for outcomes

3 lost to 

follow-up

768 discontinued 

n-3 PUFA

4 lost to 

follow-up

687 discontinued

vitamin E

11 received 

n-3 PUFA

4 lost to 

follow-up

848 discontinued 

n-3 PUFA

808 discontinued

vitamin E

2 lost to 

follow-up

15 received 

n-3 PUFA

2 received 

vitamin E

Reprinted with permission from Elsevier (Lancet 1999;354:447–55).
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1995, 11,324 patients were randomly assigned supplements of n-3 PUFA (1 g daily,
n = 2,836), vitamin E (300 mg daily, n = 2,830), both n-3 PUFA and vitamin E 
(n = 2,830), or none (control, n = 2,828). The trial profile shows the flow of patients
through the various stages of the study in each of the four treatment arms: no
further descriptive text is needed [3].

Two-way crossover design

In a crossover trial, participants switch treatments at different time periods or
stages of the study. Usually the treatment sequences are treated as parallel groups
in a trial profile, rather than the treatment arms. Figure 4 shows the trial profile
of a crossover trial of azithromycin in children with cystic fibrosis [4]. In this study,
41 children with cystic fibrosis participated in a randomized, placebo-controlled
crossover trial. Initially, they received either azithromycin or placebo for 6 months.
Then, after a 2-month washout period (free of either treatment), they were

Figure 4. Trial profile for a crossover-design study of the use of azithromycin as a treatment for children 

with cystic fibrosis [4].

360 assessed for eligibility

265 ineligible 

or excluded

1 withdrew
1 missed final

assessment
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primary endpoint
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primary endpoint

20 assigned

azithromycin 

then placebo

21 assigned 

placebo then

azithromycin

95 approved

42 refused/

other reasons

53 recruited

12 unstable/

ill/withdrew

41 randomized

= patients had insufficient data to be included in the analysis.

Reprinted with permission from Elsevier (Lancet 2002;360:978–84).
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assigned to the treatment they had not already received (crossed over). 
The primary outcome was median relative difference in forced expiratory volume
in 1 second between azithromycin and placebo treatment periods. 

The trial profile indicates that one patient withdrew and one patient missed their
final assessment, but it is not clear in which periods these events occurred.
Therefore, the authors explained in the text that one patient in the azithromycin/
placebo group withdrew after 4 months of the second treatment period, and one
patient in the placebo/azithromycin group missed the 6-month assessment in the 
first treatment period. 

Current practice of medical journals on the use of trial profiles

To investigate the practice of medical journals regarding the use of trial profiles
when reporting studies, 94 clinical trial reports were identified that were
published in four general medical journals during July to October 1999 before the
release of the revised CONSORT statement (38 in The Lancet, 24 in the New
England Journal of Medicine, 18 in the BMJ, and 14 in JAMA). 

In Table 1, a summary of the number of studies giving trial profiles and the
number giving a text description of flow of participants are provided for these
published clinical trials. The use of a trial profile was more frequent in The Lancet
and JAMA (95% and 86% respectively) compared with the New England Journal
of Medicine (13%) and the BMJ (28%). However, it is important to note that 

Table 1. Results of a survey on the use of trial profiles in clinical trials published in four general medical

journals between July and October 1999.

The Lancet New BMJ JAMA

England Journal 

of Medicine

Number of clinical trials 38 24 18 14

Number of trials with a profile 36 (95%) 3 (13%) 5 (28%) 12 (86%)

Components Enrollment 36 3 5 12
of trial profile

Randomization 36 3 5 12

Treatment allocation 36 3 5 12

Follow-up 35 3 4 12

Analysis 11 0 0 1

Text description of flow of participants only 2 (5%) 21 (86%) 12 (67%) 2 (14%)

Trial profile and text description 29 (76%) 2 (8%) 4 (22%) 7 (50%)
of flow of participants
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a simple trial without any follow-up or exclusions might not require the flow of
participants to be described by a trial profile; simple text explanations may suffice. 

In the survey described above, the percentage of the reports using only 
a text description to describe the flow of participants was 5% for The Lancet, 
86% for the New England Journal of Medicine, 67% for the BMJ, and 14% for
JAMA, and the percentage using a text description together with a trial profile was
76%, 8%, 22%, and 50%, respectively. 

Table 1 also shows whether the five suggested components of trial profiles were
included in the trial profiles included in the survey. All of those studies that
published a trial profile included information on enrollment, randomization,
follow-up, and treatment allocation, but very few gave the analysis population 
in the trial profile – instead, this was often provided in the text.

Conclusion

The use of a trial profile is helpful for reporting the design and results of a
randomized clinical trial. Trial profiles diagrammatically and transparently
summarize a great deal of data that can be interpreted rapidly, holding to the
axiom that a picture is worth a thousand words. We support the CONSORT
guidelines and recommend that the template should be used wherever possible
and that, at the very least, the trial profile should include the number of patients
randomly assigned, receiving treatment, completing the study protocol, and
included in the final analysis for the primary outcome.
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Presenting 

Baseline Data

Belinda Lees, Duolao Wang, and Ameet Bakhai

The presentation of baseline data is essential for the proper
reporting of a randomized clinical trial. Baseline data describe
the characteristics of the population participating in the trial.
They are usually recorded at randomization and include
patients’ demographic characteristics, disease-related risk
factors, medical histories, and concurrent medical treatments.
In this chapter, we discuss some of the uses of baseline data 
in clinical trials, data that should be included as baseline data 
in publications, and issues relating to the significance testing 
of baseline data.

■■❚❙❘ Chapter 34
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Why should baseline data be described?

Baseline data describe the characteristics of the population participating in the
trial. This should allow you to assess the generalizability of the trial by comparing
the characteristics of the trial’s patient population with the overall patient
population with that disease, thus confirming the external validity of the trial.

In large studies where randomization has been performed correctly, the baseline
variables should be well balanced between treatment groups, confirming that
randomization has been successful. If the treatment groups are imbalanced with
respect to their baseline variables then the results obtained might be biased –
particularly when such variables might affect the outcome (eg, disease severity). 

Reporting baseline data also allows for the identification of imbalances between
treatment groups that might subsequently become confounders. Such potential
confounders can create an apparent difference in outcome between groups where
none really exists, or they can even mask an effect that truly exists. 

If the investigator is aware in advance of which baseline characteristics might 
act as potential confounders then, when designing the study, procedures such as
stratification or minimization can be incorporated into the randomization
algorithm to balance these characteristics. This will help to ensure that any
important variables that might affect the outcome are balanced across groups. 
For example, in a trial of a treatment for lung disease in cystic fibrosis it might 
be important to ensure that the groups are balanced for baseline lung function
measurements. This is particularly important in smaller studies, where there is an
increased risk of imbalance in baseline variables due to chance.

What should be included in baseline data?

It is essential to provide baseline data when you report randomized controlled
trials. Most major medical journals now require you to follow the CONSORT
(Consolidated Standards of Reporting Trials) guidelines [1], which are a set of
recommendations aimed at improving reporting through the use of a checklist and a
flow chart. The checklist pertains to the content of the title, abstract, introduction,
methods, results, and discussion. Item 15 of the CONSORT guidelines states that
baseline demographics and clinical characteristics should be described for each group.

Baseline data should always be measured prior to randomization, as close to the 
time of randomization as possible. This is particularly important when the variable
being measured (eg, disease severity) could affect the outcome of the study.
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Table 1 shows typical baseline data for a randomized controlled trial comparing
the effects of percutaneous coronary intervention (PCI) with coronary artery bypass
graft (CABG) surgery in the management of multivessel coronary disease [2]. The
primary endpoint for this study was the rate of repeat revascularization after each

Table 1. Typical baseline data for a randomized trial comparing the effects of percutaneous coronary

intervention (PCI) with coronary artery bypass graft (CABG) surgery in the management of multivessel

coronary disease [2].

PCI (n = 488) CABG (n = 500)

Demographic characteristics

Men 390 (80%) 392 (78%)

Mean age ± standard deviation (years) 61 ± 9.2 62 ± 9.5

Disease risk factors

Smoking status

Current smoker 77 (16%) 72 (14%)

Ex-smoker 259 (53%) 286 (57%)

Canadian Cardiovascular Society classification

Class IV 94 (19%) 108 (22%)

Class III 116 (24%) 133 (27%

Mean left-ventricular ejection fraction 57% 57%

Medical history

Previous myocardial infarction 214 (44%) 234 (47%)

Previous cerebrovascular accident 5 (1%) 14 (3%)

Previous transient ischemic attack 7 (1%) 11 (2%)

Previous peripheral vascular disease 31 (6%) 35 (7%)

Family history of cardiovascular disease 235/487 (48%) 240/499 (48%)

Type 1 diabetes 19 (4%) 9 (2%)

Type 2 non-insulin-dependent diabetes 49 (10%) 65 (13%)

Hypertension 212 (43%) 235 (47%)

Hyperlipidemia 258 (53%) 251 (50%)

Disease status

Number of segments with significant stenosis 3.2 3.2

Number of vessels

Two-vessel disease 303 (62%) 262 (52%)

Three-vessel disease 183 (38%) 236 (47%)

Diseased vessel territory

Left main stem 4 (1%) 3 (1%)

Left anterior descending (proximal) 235 (48%) 222 (44%)

Left anterior descending (other) 214 (44%) 241 (48%)

Circumflex 342 (70%) 374 (75%)

Right coronary artery 361 (74%) 395 (79%)

One occluded vessel 77 (16%) 70 (14%)

Two occluded vessels 4 (1%) 12 (2%)

Reprinted with permission from Elsevier (The Lancet 2002;360:965–70).
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treatment. The baseline data included demographic variables (eg, age, gender)
and factors that were likely to affect outcome (eg, left ventricular ejection fraction,
number of diseased vessels, presence of comorbidities such as history of stroke,
smoking, and diabetes mellitus). Factors that could modify any benefit of the
treatment (eg, current medication) should also be reported.

If a large study includes subgroup analyses then the characteristics of these
subgroups should be included. For example, in a surgical study of aortic valve
replacement, patients receiving CABG might have a poorer outcome than those
not receiving concomitant CABG, since a longer, more complex operation is
required. From the baseline data provided, the reader can determine whether the
characteristics of the subgroup receiving CABG with valve replacement are
similar to those of the patients receiving valve replacement only.

The measurement of the baseline characteristics should also be clear. For example,
in a trial on hypercholesterolemia, when reporting baseline lipid measurements it
should be specified if the patients are fasting. Similarly, in a trial on hypertension
it should be stated whether average blood pressure was assessed by a 24-hour
ambulatory blood pressure monitor, or as measured in a clinic. 

Continuous variables, such as age or height, should be reported as a mean value
and the standard deviation should be given. If the data are not normally
distributed (ie, skewed) then the median and range should be reported.
Categorical variables, such as gender or ethnic group, should be reported as
frequencies and percentages.

It is very important not to include too many variables in the table of baseline data
as this makes interpretation of the data confusing for the reader. It is
recommended that giving all patient data as well as individual group data should
be avoided and also that significance tests are not included in the table.

Should significance tests be carried out?

The use of significance tests when comparing treatment groups for imbalances in
baseline characteristics is a controversial issue [3]. Many statisticians argue that if
randomization has been performed correctly then it is not necessary to carry out a
statistical analysis of differences in baseline measurements between groups [4]. This
is because the more variables are tested, the more likely it is that one variable will be
found to be significantly imbalanced between treatment groups by chance alone 
(see Chapter 29). In this sense, the comparison of baseline data is a misuse of
significance testing since it is not being used to test a useful scientific hypothesis [4,5].

❘❙❚■ Chapter 34 | Presenting Baseline Data
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In addition, there might be differences between groups in one or more baseline
variables that are not statistically significant, but that are clinically important –
particularly if they affect the outcome. Therefore, statistical testing leading to a
nonsignificant difference might give false assurance about the differences between
groups. The contents of the table of baseline measurements and any relevant
differences should be discussed in the results section of a manuscript. 

What can be done if imbalances occur?

It is important to perform significance testing if it is suspected that the
randomization or blinding procedure is flawed in some way [6]. For baseline
characteristics that are predictors of outcome variables, if important imbalances
are found then covariate adjustment analysis should be performed to estimate
adjusted treatment effects [5,7]. This is often done with multivariate regression
methods during analysis, which take into account confounding factors and
imbalances in relevant variables at baseline. 

There are a number of regression methods available and the choice of method
depends on the type of outcome variable. For example, if the outcome variable is
continuous, a linear regression model (including analysis of covariance) can be
used during the analysis to adjust for any imbalances and potential confounders
that occur despite randomization [5]. If the outcome is binary then a logistic
regression model should be employed. When the outcome is survival time, a Cox
regression model is usually used. 

Conclusion

Baseline data are crucial for describing the study population and establishing the
external validity of a trial. It is particularly important to include demographic
variables and any measurements taken at randomization that might have an
impact on the treatment effect. By comparing the distributions of several baseline
variables according to treatment group, we can provide a clear picture of the
patients included and identify imbalances that have arisen by chance. The
occurrence of severe imbalances in a trial might suggest failure of the
randomization or blinding procedures. In this case, covariate adjustment analyses
must be made to calculate the unbiased treatment effect. This topic is discussed
further in Chapter 25.
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Use of Tables

Hilary C Watt, Ameet Bakhai, and Duolao Wang

Clinical trial data are almost invariably displayed in statistical
tables. Familiarity with the structure of these tables, therefore,
allows a quick and logical appreciation of results. Use of a
standardized column and row format, as well as informative
headings, enables tables to stand alone and convey information
in a concise manner. Such tables also allow a rapid comparison
between treatment effects. In this chapter, we discuss different
types of tables used in clinical trial reports, providing standard
examples of the most common formats.

■■❚❙❘ Chapter 35
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Introduction 

The main results of clinical trials research are often reported in tables and figures
within a research report or in a peer-reviewed manuscript. Very few research or
study reports contain text alone. The benefits of collating results into tables are
that they are concise and usually follow a logical order. Tables reduce the need for
text, and allow an easy comparison of treatment effects. Furthermore, most
statistical software can be programmed to generate tables; therefore, it is easy to
produce revised tables if patients are added (or removed) from the dataset.
Incorporating such revisions into text is more time consuming.

Ideally, the reader should be able to interpret tables and figures with little or 
no reference to the text. Once recruitment statistics have been reported (usually 
in a trial profile or a flow chart) then a baseline table should follow, with
demographic and clinical characteristics of the patients, for each arm of the 
trial [1]. Constructing an appropriate baseline table is described in more detail 
in Chapter 34. Results tables usually follow, presenting clinical outcomes for each
trial arm in adjacent columns, usually with additional column(s) to directly
compare the arms. Finally, adverse events, prespecified secondary outcomes,
outcomes at additional time points, and subgroup analyses results are tabled. 

Whilst tables are essential for reporting results, detailed information on the
methods used for the study are best provided in text format. These might
elaborate on the specific method of randomization used, use of nonparametric or
unusual statistical tests, construction of subgroups, and handling of missing data,
as required. It is also unnecessary to use a table when very little information needs
to be presented, particularly considering that tables require relatively more effort
to produce and handle (certainly for journal editors), and that the inclusion of too
many tables and figures duplicating information makes a report more difficult to
produce, read, and appreciate [2]. 

Indeed, endless tables make it almost impossible to memorize the results and to
find the more important information without guidance in the accompanying text.
When large reports are necessary/standard practice, such as reports for data
monitoring boards, it is a time-consuming and skilful task to extract the pertinent
information. A single results line might contain the reason for delaying or
terminating an entire study. Therefore it is important to be sensible about the
construction of tables, bearing in mind the intended audience.
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The standard table

Table 1 gives an example of a standard outcomes table showing deaths in each
treatment arm. Glancing at it initially, we are presented with numbers and
percentages by cause of death in a study comparing placebo and the active
treatment of magnesium. It is a trial testing the effect of magnesium supplements
on patients who have had an acute stroke within the preceding 12 hours (some of
this information is summarized in the table heading, which has been expanded 
for the purpose of this chapter). The final column gives the P-value. Since there is
one P-value per line, these clearly represent comparisons within each row,
between the two treatments in each column, ie, between the placebo and the
magnesium groups. 

The authors follow the standard practice of giving both the percentages (useful for
comparing directly between the two groups) and the numbers (useful for giving
the informed reader some idea of the precision of the percentages quoted). The
numbers of patients recruited are shown at the top, while in each row the numbers
of patients experiencing the event are also shown. The reader can therefore
calculate percentages for each outcome in each group for him/herself; the
calculated percentages agree with those shown.

We must assume that there are no missing data since the percentages have been
calculated using the same denominators for each column for each cause of death;
if there were missing data, then it would be desirable to add the appropriate
denominator in each column beside the absolute number of outcomes 
(eg, “109/1198 [9%]” for strokes in the placebo group). In this example, there is

Table 1. Cause of death in a trial of magnesium supplementation for acute stroke [3]. Data are number 

of patients (%).

Reproduced with permission from Elsevier (Lancet 2004;363:439–45). 

Cause of death Placebo (n = 1198) Magnesium (n = 1188) P-value

Stroke 109 (9) 116 (10) 0.62

Coronary heart disease 15 (1) 18 (2) 0.60

Cardiac (noncoronary) 2 (0.2) 2 (0.2) 1.00

Vascular (noncardiac) 16 (1) 20 (2) 0.51

Cancer 0 2 (0.2) 0.25

Pneumonia 47 (4) 56 (5) 0.37

Other 7 (0.6) 13 (1) 0.16

Total 196 (16) 227 (19) 0.086
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no specified follow-up time for this specific table, which implies that the table lists
any deaths that occurred during the course of the trial. In other cases, it might be
helpful to specify the duration of follow-up; for instance, the first column could
then be given a title such as “Main outcome at 12 months”. This table could also
be improved by presenting the risk difference/ratio and its 95% confidence
interval (CI) for each outcome (see Chapter 20).

Complex tables: tables and figure combinations 

and two-dimensional comparisons

In some instances, a table might incorporate a figure within it. This is common
practice in meta-analysis reports, as well as for reporting subgroup analyses in
single clinical trials. Figure 1 gives an example showing different outcome measures
in a randomized trial, incorporating a table and figure combination. It also lists
several forms of outcomes (global outcome, mobility, functionality, and death) 
on the left-hand side, followed along the row by absolute ratios of events 
within treatment groups, followed by a graphical comparison between the two
treatment arms, and lastly supported by an odds ratio and a P-value of the
treatment difference. 

The ratios provided allow the reader to calculate crude or unadjusted odds ratios –
eg, for Barthel score <95, the odds ratio can be calculated as 775 / (1188 – 775) /
(787 / [119 8 – 787]) = 0.98 – which are similar but not identical to the quoted odds

❘❙❚■ Chapter 35 | Use of Tables
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Figure 1. Primary and secondary trial endpoints [3]. 

Reproduced with permission from Elsevier (Lancet 2004;363:439–45). 
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ratios (0.99 for our row). Detailed reading of the statistical methods section states
that the authors have adjusted their odds ratios for the stratification variables,
namely age group, the side of the body affected by the stroke, time to
randomization, and type of stroke – hence the reason for the discrepancy between
the two ratios. Ideally, this adjustment should have been noted in a footnote to 
the table. 

The text also explains the reason for the missing numbers against the “global
outcome” (because it is a composite odds ratio for death or disability), which
might again have been included in a table footnote. The figure within the table
gives no additional information to the text of the table (representing merely the
odds ratios and CIs graphically), but presents it in a more user-friendly way,
allowing the reader to quickly appreciate which outcomes are improved by the
active treatment. 

In this example, there is a slight suggestion that the death rate is increased, since
the estimated odds ratio is above 1, as well as most of the CI. However, the fact
that the CI does encompass the odds ratio of 1 (ie, from 0.98 to 1.53) and the 
P-value = 0.07 (ie, >0.05) suggests that this is also compatible with no difference
in death rates between the treated and control arms. Most other outcomes,
including the global outcome, show very little difference between the two arms,
with CIs including the odds ratio of 1, and nothing approaching statistical
significance. For key outcome results, it is becoming traditional to present this
very useful combination of both a figure and table.

On occasions it is necessary to incorporate subheadings within a table. Table 2
shows an example of such a table, based on cost data from a randomized trial 
for the evaluation of a new model of routine antenatal care. The costs are
appropriately reported separately for each country and also separately, using
subheadings, for the provider’s costs and the costs borne by the women. As well as
giving descriptive statistics for the costs according to treatment (ie, means and
standard deviations), the table also directly reports a comparison between the two
models, ie, the authors quote a mean difference with 95% CIs. The use of this
summary measure means that the reader can deduce the mean cost saving that
would accrue by using the new method on, say, 100 women (by multiplying the
mean difference in costs by 100), and the level of precision of this estimate, 
based on differing costs for different women (ie, attributable to sampling variation,
as reported in the 95% CI). 

The cost units are given in the footnotes (since they do not apply to all the data 
in any one column), as well as detailed information needed to interpret this
information fully, namely on how local currencies were converted into US$. Such
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tables demonstrate how complex information can be presented in a compact way
using a two-dimensional comparison table that compares treatments in columns
and countries in rows, and includes subgroup comparisons using additional rows.
Such tables are invaluable as they obviate the need for complex text and 
enable the reader to fully appreciate where the treatment differences make the
greatest impact.

Using tables instead of text

Table 3 is an example of a table taken from the methods section of a clinical trial.
It contains categorization of the venous segments, which enables the reader to
review their categorization easily. The accompanying text, being less wordy than 
if it was incorporated into the text, is easier to read. The authors use their
categorization of the venous segments in their definition of type of reflux, 
as follows. 

Table 2. Costs to providers and women in Cuba and Thailand [4]. 

aAverage cost per pregnancy 1998, US$ purchasing power conversion. The official exchange rates on January 1, 1998,

were: $US1 = 1.00 Cuban Peso = 52.3 Thai Baht. The purchasing power parity rate on January 1, 1998 was US$1 = 

0.42 Cuban Peso = 26.9 Thai Baht. These were calculated on the basis of costs of a basket of selected food items 

in each country. This allowed a common purchasing power parity conversion method to be used. 
bAverage time per pregnancy in hours.

Reproduced with permission from Elsevier (Lancet 2001;357:1551–64).

Type of cost New model Standard model Mean difference

Number of women Mean (SD) Number of women Mean (SD) (95% CI)

Providers’ costsa

Cuba 2870 885.4 (1632.0) 2734 956.8 (1294.2) –71.4 (–148.8, 2.5)

Thailand 3278 167.2 (144.7) 3091 206.1 (172.9) –38.9 (–46.3, –30.9)

Women’s out-of-pocket costsa

Cuba 170 174.4 (470.2) 170 242.4 (174.4) –68.0 (–144.0, 7.7)

Thailand 205 11.9 (16.7) 226 18.4 (27.1) –6.5 (–10.8, –2.19)

Women’s time in access to careb

Cuba 170 15.9 (17.3) 170 25.0 (23.5) –9.1 (–13.5, –4.7)

Thailand 205 14.8 (12.1) 226 29.7 (19.2) –14.9 (–18.0, –11.8)
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‘Venous reflux’ was identified as either: 

• superficial (arising in any superficial segment) 
• mixed superficial and segmental deep (one or two of the three 

insonated deep segments) 
• mixed superficial and total deep (all three deep segments) 

This defines the main subgroups that will be used in the analysis of this trial.
However, this might not be considered a good use of a table in a journal
manuscript where the number of tables is restricted; in this situation, tables should
be used for detailed results of the study. 

Reasons to include a figure in addition to, or instead of, a table

If there is one main outcome measurement for all patients included in the trial
then it might be more helpful to show the results for this outcome in detail
through a figure, rather than a table. For instance, the authors might include a dot
plot or survival curve, according to the nature of the data collected. The IMAGES
(Intravenous Magnesium Efficacy in Stroke) study (from which Table 1 and
Figure 1 were extracted) reported the main outcome measure on all trial patients
by including the following sentence: “When analyzed as time to event, the hazard
ratio for death during the study was 1.18 (95% CI 0.97, 1.42, P = 0.098)”; they
presented the corresponding survival curve shown in Figure 2 [3]. 

Inclusion of this figure gives appropriate emphasis on the main outcome for all
patients, as well as allowing extra detail to be observed (such as cumulative
proportions of death at any time point and any changes in pattern by length 
of follow-up). 

Table 3. Insonated venous segments [5]. 

Reproduced with permission from Elsevier (Lancet 2004;363:1854–9).

Superficial venous system Deep venous system

Saphenofemoral junction Common or superficial femoral vein

Long saphenous vein (above knee) Popliteal vein (above knee)

Long saphenous vein (below knee) Popliteal vein (below knee)

Saphenopopliteal junction

Short saphenous vein

Calf-perforating veins
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This IMAGES paper included a: 

• trial profile 
• baseline table 
• figure/table reporting primary and secondary endpoints (our Figure 1) 
• figure showing the primary endpoint in detail (our Figure 2) 
• table reporting cause of death (our Table 1) 
• figure/table reporting subgroup analyses (similar format to our Figure 1)
• table of adverse events (similar format to our Table 1)

This gives a comprehensive guide to the pertinent results that are needed. 

When should table construction begin in a trial?

‘Ghost’, ‘dummy’, or ‘template’ tables are often drafted by a trial statistician
according to the statistical analysis plan, and approved or amended by the principal
investigators. Such tables provide layout, headings, and footnotes, but the fields
remain empty of any data. Often, the appropriate time to construct such tables is

Figure 2. Kaplan–Meier plot of cumulative mortality [3]. 

Reproduced with permission from Elsevier (Lancet 2004;363:439–45). 
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at the beginning of the trial when case report forms are being designed to capture
the data. Each piece of information should link to a data entry field(s). In a large
clinical trial, it is often necessary to undertake interim analyses of the results, 
to be confident that it is appropriate to continue randomizing patients between
the treatment arms. A large number of tables are usually constructed at this time –
more than can be reported within the main published report. 

Once the interim report has been constructed and reviewed, it is useful to take the
opportunity to decide on the content and format of the tables for public
presentations of the results and for the final publication; this enables the final
report to be produced speedily once the datasets are cleaned and locked up.
Remember that few people are privy to the interim results (only those on the data
monitoring board) – this is a key reason for discussing the layout with empty
tables. It also ensures that the focus of the results is decided upon without
reference to the actual results obtained, which maintains objectivity. For instance,
the focus is appropriately retained on the chosen main outcome measures and
adverse effects, whilst also reporting the named additional outcome measures and
any prespecified subgroup analyses.

Once the final report is produced, the computer-generated statistical output
should be checked. It should also be carefully reviewed for errant calculations 
and to ensure that figures are displaying correct information. Consistency across
different presentations of data and different methods of analysis can also be
checked, for instance between a survival plot and the corresponding hazard 
ratio, comparing the odds ratios over a specified time period with hazard ratios,
or comparing hazard ratios with mean survival times in the two groups.

Journal guidelines

Journals often specify the maximum number of tables and figures that can be
incorporated in a manuscript. If they do not state this explicitly then you still need
to ensure that the number is in accordance with other papers published in that
journal. A general rule of thumb is to include no more than one table or figure per
1,000 words of text [6]. Many guidelines apply to most mainstream journals,
whether or not they are stated explicitly. When submitting the paper to a journal,
tables should be typed in double spacing, each on a separate page with a self-
explanatory title. They should be placed at the end of the manuscript with their
approximate locations indicated in the text [7]. Journals have different policies on
whether it is necessary to explain abbreviations used in a footnote when they have
previously been used in the text. 
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The CONSORT (Consolidated Standards of Reporting Trials) guidelines for
reporting of clinical trials state that the number of participants (denominator) in each
group included in each analysis must be reported, as well as whether the analysis 
was by ‘intention-to-treat’ (see Chapter 22) [1]. The guidelines also suggest that the
results should be stated in absolute numbers when feasible (eg, 10/20, not 50%),
although giving both can be considered good practice. For each primary and
secondary outcome, the report should quote a summary of results for each group,
and the estimated effect size and its precision (eg, 95% CI as in Table 1). 

Authors must address multiplicity by reporting any other analyses performed,
including subgroup analyses and adjusted analyses, indicating those that were
prespecified and those that were exploratory (see Chapters 23, 25, and 29). All
important adverse events or side-effects in each intervention group also need to be
reported. International journals such as The Lancet require that all contributors
abide by such guidelines.

Detailed advice on constructing a table

Once you are ready to construct a table, there are a number of guidelines to help
produce the best format.

Overview

Purpose

Decide on the purpose of the table and what information should be included
within it. For clinical trials, this is generally a comparison between two treatment
groups, and the table will contain summary statistics for each treatment, as well as
information directly comparing the two treatments.

Table size

Smaller tables can draw readers in more clearly to the main issue you want to get
across, although a single row table might be best incorporated in the text. In a
journal with a double-column page, a single-column table should not exceed 
60 characters (and equivalent spaces) and a full-width table should not exceed 
120 characters [6].

Unnecessary information 

The best tables contain information that will be useful to the reader. Avoid
repeating information in figures or text, other than the key outcomes. Balance the
merits of giving the readers additional information with the possibility that the
readers will feel overwhelmed if faced with too much information. This is often
the case in tables of clinical characteristics.
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Layout

Consider the layout of the table and anything that might make it easier to read –
eg, subheadings, blank lines, or use of parentheses around 95% CIs or 
around percentages. 

Totals

It might be desirable to include a row of totals, and sometimes subtotals – 
eg, when giving several different causes of death (Table 1). When two treatment
arms are being compared, with information for each in a separate column, it is
usually unhelpful to include a totals column to combine information from both
trial arms. Consider adding a column combining treatment groups only if you have
two similar treatments arms that can usefully be considered in combination, 
for comparison with the placebo group or another treatment group.

Titles and footnotes

Title/headings

The title should be a concise description of the information contained within the
table. Row headings and column headings should describe what lies within them
– where longer descriptions are necessary, supplementary information can be
given in a footnote. If most/all columns contain the same type of information,
details of this should be included in the table title or in a footnote, rather than 
in individual row headings (eg, footnote: “data are given as mean [standard
deviation] unless stated otherwise”).

Explanatory information

Remember that tables need to fully explain what is being compared. For instance,
if quoting odds ratios, hazard ratios, or relative risks, state what outcome the
ratios represent and which groups are being compared. The reader might need to
look at row, column, and title headings to find all of this information.

Follow-up/outcomes

Provide the time to follow-up in the title of the table unless the trial has only one
time line (ie, all patients were followed to 12 months). When outcomes that are not
as final as death are included, it is important to specify whether the table reflects: 

• the first outcome a patient suffers (as in a survival analysis)
• the worst outcome a patient suffers (hierarchical reporting) 
• all outcomes separately (includes double counting if a patient suffers 

more than one event)

The specific method of reporting can be placed in the methods section of the text.
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Adjustments

If analyses are adjusted, remember to specify what characteristics have been
adjusted for. Clinical trials often report unadjusted results, unless stated otherwise
in the protocol, which should then specify one or two things to adjust for or stratify
by. For instance, the results might be stratified by recruitment center, or by patient
characteristics used in stratified randomization.

Units

Make sure the units are quoted in the column or row headings, and ensure that all
units are in accordance with the journal policy.

Reported numbers

Indicate the total numbers of patients that are being reported on – this could be
included within the title row, if the same numbers are used for all analyses;
otherwise, this information might need to be incorporated within the body of the
table, perhaps to reflect different amounts of missing data for different outcome
or predictor variables.

Analysis method

State whether the analysis is by intention-to-treat or per-protocol analysis, or any
other method. If the analysis method is not mentioned in the table then it must be
stated in the text.

Rounding

Any totals given should be calculated from the data before rounding. If data are
rounded in the table, the publication should state that differences might occur
between sums of component items and totals because of rounding. 

Footnotes/references

Use footnotes for important information that does not fit elsewhere. References
cited only in tables (or in legends to figures) should be numbered in accordance
with a sequence established by the first identification in the text of that particular
table (or illustration) [8].

Presenting numeric data in text and within fields of tables

The term ‘field’ refers to the cells where the numbers (or occasionally text
information) are put within the table. Remember that the requirement to give
units of measurement and to indicate the number of patients used in results (often
reported in row or column headings of a table) also applies to data given within
the text of the results section.
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Significant figures (decimal places)

Use an appropriate number of decimal places so as not to give a false impression
of precision (eg, if a percentage is out of <100 patients then no decimal places are
needed). Perhaps use two decimal places for most things (unless there is little
variation other than in the third decimal places and this is significant). The
number of decimal places could depend on the number of patients in the study or
the precision of the results – eg, if the CI is a few units wide then you would
certainly not need more than one decimal place in the estimate. It is important to
standardize the number of significant figures or decimal places in all values in a
table or in all figures of a similar type. 

P-values

Report P-values to two decimal places if P > 0.05, or as P < 0.0001 if appropriate,
or else generally use two significant figure (except perhaps if around P = 0.05 to
emphasize which side of P = 0.05 it falls). Remember that P-values are always
positive; if the computer output reports the P-value as 0.0000, this implies that 
P < 0.00005 and it should be reported as P < 0.0001 [9]. Avoid the use of the
abbreviation ‘NS’ for nonsignificant – it is always preferable to quote an exact 
P-value. This is particularly important if the P-value is only slightly greater than 
P = 0.05, to denote a trend in the treatment effect.

Descriptive statistics

For psychometric scales, indicate whether small numbers indicate healthier 
or more unwell patients. Percentages, ratios, averages, etc. might be helpful in a
table for ease of comparison between columns – as well as reporting the ratio of
numbers, where applicable (eg, report ‘5/10’ for five cases out of 10, as required
by CONSORT guidelines [1]). Standard deviations or other measures of spread
should generally be quoted in baseline descriptive statistics.

Negative values

Avoid reporting negative values for comparisons where possible, eg, rather than
saying there was an increase by –20%, state there was a decrease by 20%. An
exception to this is within a table with a column for effect sizes for different outcomes
or predictor variables; some may show increases, and some may show decreases.

Confidence intervals

Results that compare the treatment arms should generally be quoted with 
95% CIs, as should any other results, too. Whilst remembering that statistical
significance can be deduced from the CI on a comparison measure (odds ratio,
difference, etc.), P-values may nevertheless be quoted in addition, depending on
the preference of the authors, provided the table does not become too unwieldy
as a result. 
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Specific information for fields of tables

Asterisks

P-values can sometimes be quoted using asterisks to indicate levels of significance,
eg, in a larger table where quoting the P-values themselves would lead to a
cumbersome table. The normal convention is to use * for P < 0.05, ** for P < 0.01,
and *** for P < 0.001, for those values achieving statistical significance [9].

Blank cells 

Always fill in blank cells, with zeros if appropriate, or with a note to say why the
data is not available. If you use the abbreviation ‘NA’, state whether this refers to
‘not available’ or ‘not applicable’ [8]. If a large number of fields contain zeros 
or no information, this can be considered a waste of space and you need to
consider restructuring the table or including the information in a different way
(eg, combine some rows together).

Note on deducing statistical significance from

confidence intervals

To deduce significance from a CI on a ‘statistic of comparison’, look to see whether
the CI contains values that indicate there is no difference between the groups being
compared. For example, does a 95% CI on an odds ratio, hazard ratio, or relative
risk contain the value 1.0 within the range given? If so, then the results are
consistent with there being no statistically significant difference between the two
groups and we can deduce that P will be greater than 0.05. If the entire 95% CI is
above (or below) 1.0 then there is evidence that there is a significant difference
between treatment groups with respect to this outcome measure and P will be less
than 0.05. Similarly, if a 95% CI for an estimated absolute difference in outcomes
between treatments contains the value 0 (ie, the lower limit is negative and the
upper limit is positive) then P > 0.05; otherwise, if the CI contains only positive or
only negative values then P < 0.05 (see Chapter 18). 

Finally, it is important is to make sure that: 

• all the key results are contained within the report
• written interpretations are consistent with the tables
• repetition between tables and text is minimal
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Conclusion

Tables are an effective way of presenting numeric data concisely, and are useful
for presenting both the baseline characteristics of patients in each treatment
group and the detailed results from a clinical trial. Tables should not be too large
or complex to avoid overwhelming the reader, nor should they be too short, where
the information might have been better incorporated within a few lines of text.
Careful consideration is needed about what tables and figures to incorporate
within a report and subsequent manuscripts, paying attention to the best way of
presenting different types of information, as well as the maximum number allowed
by journal editors. Tables need to be labeled sensibly, in such a way that the reader
can understand the information contained within the table without reference to
the text. Good tables, along with relevant figures (see the next chapter), allow trial
construction to be clearly understood and results to stand out in a reader’s mind.
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Use of Figures

Zoe Fox, Anil K Taneja, James F Lymp, 

Duolao Wang, and Ameet Bakhai 

Graphical representation of clinical data is used to provide visual
information on the distributions or relationships of outcome
variables, as well as illustrating the treatment effects observed
in a study. Figures can illustrate the efficacy or safety of different
treatments and provide a graphical comparison of those
treatments among specific groups of patients. Publications
benefit from graphical representations if they are easily
interpretable and correctly applied. In this chapter, we discuss
the various types of graphical representations that would be
appropriate for different kinds of data. The advantages and
disadvantages of specific graphical representations with 
a practical view are also illustrated.

■■❚❙❘ Chapter 36
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Introduction 

A graph or figure is a visual illustration of data, where data consist of observations
of one or more variables. Data can be thought of as:

• categorical (qualitative)
• numeric (quantitative) 

Categorical data are split into the following three groups: 

• binary (containing two categories) 
• nominal (more than two categories with no ordering) 
• ordinal (more than two categories with inherent ordering)

Numeric data are more complicated and can be categorized as:

• discrete numeric (takes a whole number in a given range)
• continuous (taking any value, not necessarily an integer)
• censored (continuous data that can only be measured in a certain range) 
• other data, such as rates or percentages

Graphs are usually produced post-analysis to provide the reader with a visual
understanding of the global picture regarding the treatment effect. However, it is also
important to visualize the data prior to its analysis [1,2]. Displaying the data
beforehand enables one to see how it is distributed, in addition to spotting any
outliers, unexpected values, or errors. This provides a prior global interpretation and
allows for any corrections that might be required before performing the final analysis.
A number of different figures can be employed for visual inspection of the data, but
only well-documented, appropriate figures will illustrate the patterns sufficiently. 

Basic characteristics of a graph

A useful graph displays both the magnitude and the frequency of individual data
points from the distribution under consideration [3]. A graph should contain a
title, and x and y axes with their respective labels. The x-axis is the horizontal axis
and usually corresponds to the independent variable; the y-axis is the vertical axis
and tends to relate to the dependent variable. Graphs should be clear and have
short, informative titles describing the data that are displayed. 

A useful graph will contain appropriately labeled axes and clearly presented
information. The final graph should summarize the data by itself, without the
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need to refer to the text for further information. The scale of the axes needs to be
included, and the maximum and minimum values should be specified. A legend
and footnote can also be added to a graph to increase clarity. Overcrowding
figures with details should be avoided to eliminate any confusion in understanding
the graphical information.

Example: MaxCmin
1

trial

In this chapter, we will illustrate data from the MaxCmin
1

clinical trial using
appropriate graphs. MaxCmin

1
was a randomized clinical trial set up to compare

the safety and efficacy of ritonavir-boosted indinavir (IDV/r) versus ritonavir-
boosted saquinavir (SAQ/r) in HIV-1-positive patients [4]. Out of the 306 patients
who initiated their randomized regimen, 80 experienced protocol-defined
virological failure (43 patients [27.2%] in the IDV/r arm and 37 patients [25.0%]
in the SAQ/r arm) (Figure 1). In this basic graph, the two treatment arms appear
on the x-axis and the outcome information (the percentage) is summarized on 
the y-axis. 

Figure 1. The percentage of patients who experienced protocol-defined virological failure in each treatment

arm of the MaxCmin
1

study. 
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Commonly used graphs in clinical research

The choice of graph that will best fit the data depends on the distribution of the data
(categorical or continuous) and the number of variables under consideration. Since
categorical data consist of unique categories (eg, male/female) where each category
is usually observed more than once, and continuous data contain distinct values 
(eg, height in cm) where each specific value appears infrequently, we use different
methods for displaying each type of data. The most commonly used graphs to
display single discrete numeric variables or categorical data are bar charts, pie
charts, dot plots, and stem-and-leaf plots. Continuous data are usually displayed
using histograms, dot plots, box plots, scatter plots, and line graphs, although
continuous data are sometimes grouped in order to use graphical methods for
categorical data. These graphs are described in detail in the following sections. 

Bar charts

Bar charts can only be produced when the variable of interest is categorical or
discrete numeric. They frequently occur in publications because they are visually
very strong, useful for comparing more than one group, and easy to produce and
interpret. Bar charts are produced by calculating the number of observations in
each category; these observations are then translated into frequencies (or
percentages), where the length of each bar is proportional to the frequency of
observations in that category. Labels can be added to each bar to show the total
number of patients contributing to that category. The bars on the bar chart are
typically separated by gaps to indicate that the data are discreet. 

In the MaxCmin
1

study, protocol-defined virological failure was broken down into
true virological failures, patients who were lost to follow-up, patients who
withdrew consent, and those who died (Table 1). These data can be presented in
two ways using a bar chart: 

❘❙❚■ Chapter 36 | Use of Figures
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Reason failed Indinavir/r Saquinavir/r

n = 158 n = 148

Virologically 33 (20.9) 25 (16.9)

Lost to follow-up 8 (5.1) 8 (5.4)

Withdrew consent 1 (0.6) 3 (2.0)

Died 1 (0.6) 1 (0.7)

Total 43 (27.2) 37 (25.0)

Table 1. Number of patients (%) with protocol-defined virological failure in both treatment arms of the

MaxCmin
1

study. 

r = ritonavir. 
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• by looking at the percentage of all patients who have each type 
of virological failure in both treatment arms (Figure 2) 

• by presenting this data as a segmented column chart to show the
distribution of protocol-defined virological failures within each 
treatment arm (Figure 3)

Note that the column totals of a segmented bar chart add up to 100%. This reflects
failure reasons for the patients who failed, but does not show the proportion of
patients who failed in each treatment arm. 

Care should be taken with bar charts because data can be presented in a number
of different ways according to the message you want to depict. In addition,
columns can be reordered to emphasize a specific effect, causing data to be
misinterpreted more easily.

Pie charts

A pie chart is a circular diagram that is split into sections (slices), one slice for
each category. Pie charts are produced using similar methods to bar charts. They
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Figure 2. A bar chart to show the distribution of protocol-defined virological failures by treatment arm in the

MaxCmin
1

study. 
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are visually appealing, but are less informative than bar charts because they focus
on percentages. They lack data on the total number of frequencies in each category,
although these can be added as labels if they do not confuse the interpretation. 
Pie charts are generally less desirable than bar charts because the data shown are
proportional to the square of the frequency (ie, as area of a circle), rather than to
the frequency itself, and thus any differences are over-represented. Also patients
can only be counted once in a pie chart.

Figure 4 shows the same data as Figure 3 for the IDV/r arm, but they are displayed
using a pie chart rather than a bar chart. Although it is possible to produce two
pie charts, one for the IDV/r arm and one for the SAQ/r arm, it is easier to
compare data from these two treatment arms in a bar chart than a pie chart.

Dot plots

In a dot plot, each observation is represented by a single dot along a horizontal or
vertical line. In the MaxCmin

1
study, it is possible to crudely compare the effects

of the two regimens on immunological markers by producing a dot plot of the

Figure 3. A segmented column chart to show the distribution of protocol-defined virological failures within

each treatment arm in the MaxCmin
1

study.
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change in CD4 cell count from baseline to the end of 48 weeks of follow-up
(Figure 5). 

Dot plots can be used for both discrete and continuous data, but continuous data
tend to be grouped, otherwise it can be cumbersome to plot the data and the plot
becomes messy and hard to understand. These plots can contain a line that is
perpendicular to the data points to show the median value and, similarly, lines can
be included to represent the interquartile range (IQR). Multiple dot plots can be
drawn alongside each other to allow comparisons to be made between groups. 

Stem and leaf plots

A stem and leaf plot is a hybrid between a graph and a table. It is used for numeric
data. This type of graph is usually drawn with a vertical stem and horizontal leaves.
The vertical stem consists of the first few digits of the values arranged in numerical
order, while the horizontal leaves are represented by the last digit(s) of each of the
ordered values. Note that each of the digits in the leaves represents one data
point. The resulting stem and leaf plot looks similar to a rotated histogram.

The advantages over a histogram are that:

• Stem and leaf plots are easy to draw by hand.
• Individual data values can be read from the graph, including the range,

median, and IQR.
• They are useful for small datasets.

Figure 4. A pie chart to show the distribution of protocol-defined virological failures for the indinavir/ritonavir

arm of the MaxCmin
1

study (n = 158). 
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However, the median and IQR can be difficult to calculate if the dataset contains
a large amount of data. 

If we take a look at the baseline age of patients who initiated SAQ/r in 
the MaxCmin

1
study, a stem and leaf plot can be drawn as shown in Figure 6. 

With a little effort, you can see that the age range is 19–71 years, the median
baseline age is 39 years, and the IQR is 34–48 years. Unfortunately, stem and leaf
plots are not visually appealing and are therefore not used that frequently in
medical literature.

Box plots for showing central location and outliers

A box plot, or box and whisker plot, is a diagrammatic representation of continuous
data. It provides a visual means of exploring the skewness of the data and allows
comparisons to be made between two or more groups. However, it only illustrates
the median, IQR, and range, rather than all of the data individually. A basic box
plot consists of a rectangle (the box) with arrows (the whiskers) extending out
from the top and bottom. A box plot contains a ‘+’ or horizontal line within the
box to indicate the median. The bottom of the box corresponds to the lower

Figure 5. Dot plots to show the change in CD4 cell counts from baseline to the end of 48 weeks’ follow-up 

for patients in the MaxCmin
1

study. 
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quartile and the top to the upper quartile, while the whiskers terminate at the
most extreme values in the dataset (including outliers). 

If the data are not skewed then the plot will be perfectly symmetrical – the median
will lie in the center of the box and both whiskers will extend for the same distance
on either side. If the data are positively skewed then the median will be displaced
to the bottom of the box, and if they are negatively skewed then the median will
lie towards the top. There will also be an influence on the length of the whiskers.

For data that contain wide variation between observations it is more advisable to
use a truncated box plot (Figure 7). In a truncated box plot, the whiskers extend
out a specific statistical distance from the box (to the 5th and 95th percentiles, say)
or to a point no further from the box than the IQR; all other observations (the
outliers) are presented as dots beyond the whiskers. Different groups can be
visually compared by aligning the box plots for each dataset, as long as they have
been produced on the same scale. When more than one group is compared then
the relative position of the horizontal line indicates the difference between
medians. The relative height of the boxes indicates the difference in variation, and
the relative overall height of the plots shows the difference between the ranges. 

Figure 6. A stem and leaf plot to show the baseline age (years) for patients who initiated ritonavir-boosted

saquinavir in the MaxCmin
1

study.

1 | 9

2 | 45789

3 | 0000011111222222222233333333334444444555555556666677777788888899999999

4 | 111111222223333334444455556666667788899

5 | 00111112222335566667777889

6 | 001123

7 | 1 

Note. The number on the left side of ‘|’ stands for the number of years (as a multiple of 10) and the number on

the right side of ‘|’ represents individual years. For example,‘1 | 9’ corresponds to a patient who is 19 years old.
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From Figure 7, you can see that there are no substantial differences in the CD4
count levels between the two treatment arms at week 48. The median measurements
of both box plots are displaced to the bottom of the box, revealing a positive skew
of the CD4 count data. This is emphasized by the shorter lower whisker and by the
presence of outliers above the limits of the upper whiskers. Box plots can also be
presented horizontally rather than vertically. They are simple to produce and
useful for identifying outliers.

Histograms 

Histograms look like bar charts (Figure 8). They are constructed in a similar
fashion, but are used for continuous data rather than discrete numeric or
categorical data. In order to create a histogram, data need to be separated into
categories or bins where all the categories normally have equal width. The width 
of each bar relates to a range of values for that variable, and the area of the bar 
is proportional to the frequency of observations in that range. After defining 
the categories, the construction of a histogram is essentially the same as that of 
a bar chart. 

Figure 7. A truncated box and whisker plot to show the CD4 count at the end of 48 weeks’ follow-up for

patients in the MaxCmin
1

study. 
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Figure 8. Histograms showing how the distribution of CD4 counts at week 48 in the MaxCmin
1

study change

according to the number of categories (bins). 

0

15

20

P
er

ce
nt

ag
e 

(%
)

CD4 cell count (cells/mm3)

5

1,200200 600 1,000

10

0 400 800

0

6

8

P
er

ce
nt

ag
e 

(%
)

CD4 cell count (cells/mm3)

2

1,200200 600 1,000

4

0 400 800

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 417



❘❙❚■ Chapter 36 | Use of Figures

418

Both histograms and bar charts display the frequency density, except that
histograms typically do not have spaces between the categories because the data
are continuous. The appearance of a histogram is affected by how the categories
are defined. An increase in the number of categories reduces the possible number
of observations within the category. The number and width of the categories
(bins) should be chosen according to clinically meaningful intervals. If this is not
possible then they should be selected on a trial and error basis, with an overall aim
of illustrating variations in the data. As a rough guide, 5–20 categories should be
selected, depending on the number of observations in the dataset. This can result
in a loss of information if the width of the categories is too wide; with too narrow
categories, however, the graph will consist of the raw numbers (Figure 8). Note
that most major statistical software packages do a reasonably good job of
automatically selecting appropriate category widths. 

Histograms are visually strong and useful for evaluating the spread and skew of
the data, but are associated with some disadvantages. Firstly, it is difficult to
compare two groups using a histogram; secondly, a histogram tells you how many
values lie within a certain range, but without revealing the exact measurements.

Scatter plots 

A scatter plot is a simple plot used to display the relationship between two
continuous variables. One variable is termed the ‘x’ and the other the ‘y’. Both
variables are plotted against each other, the x variable along the x-axis and the 
y variable along the y-axis. The relationship between them can be expressed with
the use of a regression line, which is usually calculated by a software package. 

A scatter graph can be used to investigate whether there was a relationship
between CD4 levels at baseline and week 48 in the MaxCmin

1
study (Figure 9). 

As we would expect, the trend line shows a highly significant relationship between
the two variables (Spearman rank correlation coefficient = 0.83, P < 0.0001). 
On the other hand, a flat trend line does not imply that there is no relationship
between the two variables under consideration. A weak relationship might exist,
or the trend line might be misleading if its gradient and positioning are the result
of a few influential points. For nonlinear relationships, other lines such as
smoothing splines or lowess curves can be used, which try to funnel the points.

Line graphs

A line graph is a plot of numeric data where consecutive values are connected by
a line (Figure 10). They can show repeated measures on a single individual to
illustrate how a certain parameter, say the pharmacokinetic (PK) concentration of
a drug, changes over time after it has been administered. In this case, the x-axis
would correspond to the time and the y-axis would reflect the PK concentration.
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Line graphs can be used to depict fluctuating data containing peaks and troughs
and are good for identifying trends. They are also used to show how the mean or
median measurement of a marker fluctuates over time by treatment group. 

Figure 10 shows the mean systolic blood pressure (SBP) at seven different time
points for 2,028 patients followed over 36 months in an anonymous study. The
dots correspond to the mean SBP at each visit and error bars have been added to
show ± one standard error. This graph shows that SBP was consistently lower in
group A compared to group B after randomization. 

Kaplan–Meier plots are a type of line graph that are used to show how the
percentage of patients who are event-free changes over time (see Chapter 21).
Another example of a line plot is the receiver operating characteristic curve, 
which is a plot of the true-positive rate (sensitivity) versus the true-negative rate
(1 – specificity) of a diagnostic test. 

Figure 9. A scatter plot showing the relationship between CD4 cell counts at baseline and at week 48 

in the MaxCmin
1

study (n = 272). 
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Caution should be employed regarding scales. When the length of time between
observations is not uniform and the x-axis is not scaled accordingly then the 
graph might not reflect the data accurately. Similarly, if two line graphs are
compared then they must be on the same scale, otherwise visual comparisons will
be meaningless. 

Spaghetti plots

If we consider the simple situation where we have separate line graphs showing
the PK profile for each individual in a study, these lines could be combined in a
single graph, sometimes called a spaghetti plot (Figure 11). Spaghetti plots are
just several line graphs that have been overlaid. These plots are useful for PK data
because they allow an assessment of the patterns of drug absorption and elimination,
and also allow you to examine the between-subject variation. If individual lines 
are not all in the same direction or do not peak to the same degree then patients
are exhibiting different responses to the drug, and further examination will be
warranted to investigate the reasons for this.

Figure 10. A line graph showing how mean systolic blood pressure (SBP) changes after randomization 

by treatment (bar stands for ± one standard error) (n = 2028).
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Forest plots

A forest plot displays point estimates and the corresponding confidence intervals
(CIs) for multiple groups. Forest plots are most commonly used to present
subgroups within a trial or the results of multiple studies as part of a meta-
analysis, which is a formal method of comparing the results of several trials using
the same intervention (see Chapter 38). Point estimates are usually obtained from
simple or extended regression models such as logistic regression. In a systematic
review of randomized controlled trials investigating the effects of corticosteroids
on mortality in individuals with brain trauma, 13 trials were combined in a meta-
analysis and the odds ratios of each study were presented using a forest plot
(Figure 12) [5]. 

In this graph, the size of the marker represents the size of the corresponding study
and the central vertical line represents no difference between the treatment and
control arms. In meta-analyses, forest plots typically include a diamond at the base
of the graph representing the combined estimate, or pooled intervention effect,
from all of the studies. The center of the diamond corresponds to the pooled 
point estimate, and its horizontal tips represent the CIs based on the formal 
meta-analysis. While it is common to use 95% CIs for each trial and for the overall

Figure 11. A spaghetti plot showing individual pharmacokinetic concentration profiles in a study.
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pooled effect, some researchers prefer to use wider CIs (often 99%) for the
pooled estimate on the grounds that evidence regarding treatment benefit should
be more convincing when combining the results of multiple studies. CIs for the
pooled estimate are much narrower than for the individual studies because more
patients contribute to the overall estimate, and consequently it is more precise. 

Forest plots allow us to review at a glance a large collection of data testing the
same relationship. They allow visual assessment of heterogeneity between groups
by comparing the results of each study to see whether there is a single underlying
effect, or a distribution of effects. If the results of the studies differ greatly, and
the CIs for all of the studies do not overlap, then it might not be appropriate to
combine the results. Although there is no statistical solution to this, heterogeneity
between studies should not be seen simply as a problem for meta-analysis – it also
provides an opportunity for examining why treatment effects differ in different
circumstances [6].

Figure 12. A forest plot showing the overall and individual odds ratios for each study. 

Reproduced with permission from the BMJ Publishing Group (BMJ 1997;314:1855–9).

 Steroid Control         Weight (%) Mantel–Haenszel  Odds ratio
     odds ratio (95% CI) (95% CI)

Ransohoff, 1972 9/17 13/18 3.1  0.43 (0.11, 1.76)

Alexander, 1972 16/55 22/55 8.0  0.62 (0.28, 1.36)

Faupet, 1976 16/67 16/28 8.9  0.24 (0.09, 0.60)

Cooper, 1979 26/49 13/27 4.1  1.22 (0.48, 3.12)

Hernesnieml, 1979 35/81 36/83 10.4  0.99 (0.54, 1.84)

Pilts, 1980 114/201 38/74 12.4  1.24 (0.73, 2.12)

Saul, 1981 8/50 9/50 3.9  0.87 (0.31, 2.47)

Braakman, 1983 44/81 47/80 11.1  0.83 (0.45, 1.56)

Giannotta, 1984 34/72 7/16 3.1  1.15 (0.39, 3.42)

Dearden, 1986 33/68 21/62 5.8  1.84 (0.91, 3.74)

Zagara, 1987 4/12 4/12 1.4  1.00 (0.18, 5.46)

Gaab, 1994 19/133 21/136 9.2  0.91 (0.47, 1.79)

Grumme, 1995 38/175 49/195 18.7  0.83 (0.51, 1.34)

Total  396/1061 296/836    100   0.91 (0.74, 1.12)

(χ2 = 15.99; df = 12; Z = 0.89)
1.00.1 0.2

Steroids better    Steroids worse

5.0 10.0
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Table 2. Summary of graphs used to display categorical and continuous data. 

IQR = interquartile range. 

Graph Features Categorical data Numeric data

Bar chart • Frequency proportional to length of bar Yes No

• Visually very strong, easy to interpret

• Bars separated by gaps to indicate discrete data

Pie chart • Percentages represent square of frequency Yes No

• Differences between groups over-represented

• Less informative than bar charts

Dot plot • Each observation represented by a dot No Yes

• Continuous data tend to be grouped

• Can be used to display median value and IQR

Stem and leaf plot • Each digit in a leaf represents a data point No Yes

• Looks similar to a rotated histogram

• Very easy to draw by hand if there are small 
amounts of data

Box plot • Displays skew of data No Yes

• Illustrates median, IQR, and range

• Truncated box plot used to spot outliers

Histogram • Continuous data usually displayed in categories No Yes
of equal width

• Bars do not have spaces between them

• Area of bar is proportional to frequency

Scatter plot • Displays relationship between two continuous No Yes
variables, x and y, using a regression line

• Influential points can mislead interpretation of line

Line graph • All consecutive data are connected by a line No Yes

• Can be used to depict fluctuating trends, 
median, and mean.

• Overlaid line graphs can create a spaghetti plot

Forest plot • Used to display point estimates and their Yes Yes
confidence intervals for multiple groups

• In meta-analyses, a diamond at the base of the 
graph represents the pooled intervention effect

• Allows visual assessment of heterogeneity
between groups

Funnel plot • Used to compare treatment effects of individual Yes Yes
studies in a meta-analysis

• Plots study precision against corresponding
treatment effect

• Good for examining publication bias, but not 
fully robust

Graphs for • Mosaic displays represent multiway Yes Yes
three variables contingency tables

• Icons supplement bar charts and pie charts, 
particularly with small sample size

• Surface plots display quantitative data 
in three dimensions
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Funnel plots

A funnel plot can also be used to compare the treatment effects of individual
studies in a meta-analysis. It is essentially a plot of the study precision against 
the corresponding treatment effect (see Chapter 38 for more). Funnel plots are
good for examining publication bias [7], but are not fully robust. In a review 
of 198 published meta-analyses, the shape of the funnel was determined by an
arbitrary choice of the method to construct the plot. When different definitions of
precision and/or effect measure were used, the conclusion about the shape of the
funnel changed in 86% of cases [8].

Graphs for three variables

Other, less common, graphs that are used to display three dimensions include
mosaic displays, icons, and surface plots. In brief, a mosaic display uses the
strengths of a bar chart to represent multiway contingency tables [9]. Icons are 
a potential supplement to bar charts or pie charts, particularly when the sample
size is small [10]. Surface plots are useful for displaying quantitative data in three
dimensions, ie, there are x, y, and z axes for plotting points and the graph must be
printed in a three dimensional representation [11]. 

Conclusion

Graphical representation facilitates the evaluation and comparison of outcome
variables among different groups, and enables an appropriate choice of statistical
methods. In this chapter, we have explored a variety of graphs that are commonly
used in clinical reports (see Table 2 for a summary). The choice of graph is
determined by the purpose of the exercise and the type of data to present. In a
trial report, all of the graphs should be appropriately labeled and contain
sufficient information without needing to refer back to the text. Sometimes more
than one graph is required, giving importance to simplicity. 
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Critical Appraisal 

of a Report

Ameet Bakhai, Jaymin Shah, and Duolao Wang

The number of clinical trials being published in peer-reviewed
journals continues to increase. While formal guidance is available
on how to submit and systematically score such reports, in
terms of their data, design, and presentation [1–3], there are
few recommendations about how to interpret clinical trials [4].
Our perception of the results of trials may be influenced by
expert peer presentations, media coverage, investment banking
reports, and Internet debate, all of which can give opposing
opinions. Therefore, healthcare professionals need to develop
the ability to quickly and effectively evaluate the results of a
clinical trial for themselves. In this chapter, we provide 10 key
questions to assist in the evaluation of clinical trials, using 
a somewhat unconventional but critical approach to gauge 
a report in more depth.

■■❚❙❘ Chapter 37
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1. Where was the report published?

Studies published in high-profile journals are likely to be widely read, evaluated,
and debated. One formal measure of the influence of a journal is its impact factor.
The impact factor is based on how often articles from that journal are referenced
by subsequent publications in the 2 years following publication, and the impact
factor of the journals in which the paper is referenced. The theory is that work of
extraordinary merit will be referenced often. Thus, there is considerable
competition to publish work in high-profile journals. It is generally believed that
work published in such journals will have been carefully vetted for bias and major
errors in methodology and design by both the editors and the reviewers invited to
evaluate the paper by the journal. The reviewers – who are invariably experts in
the subject being considered – provide excellent input and feedback to authors 
to improve their work where needed, or reject work of low quality, and thus
promote a self-perpetuating mechanism for raising the standard of the articles
published in these journals. The journal Circulation (impact factor 15) receives
about 600 articles a month, but publishes less than 60 each month.

While clinical trials are the most scrutinized and valued reports in terms 
of clinical evidence, most journals will also publish reviews, hypotheses, and
studies with small numbers of subjects if the work is novel or controversial;
therefore, not all space is devoted to randomized trials. Table 1 demonstrates the
importance placed on randomized trials as the best source of evidence for the
evaluation of the efficacy of therapies. A letter in the BMJ noted that the impact
factor of top journals dropped as they began to publish more articles such as
research letters, since the calculation process does not fully account for these
types of article [5]. Therefore, the impact factor alone should not be used to assess
the usefulness of an article published in a particular journal. 

Table 1. The quality of evidence as defined by the US Public Health Task Force Guide to clinical preventive

services [15].

Quality of evidence Type of study

I Properly designed randomized controlled trial

II.1 Evidence obtained from well-designed controlled trials without randomization

II.2 Evidence obtained from well-designed cohort or case-control studies

II.3 Evidence obtained from multiple time series/observational studies, with or without
intervention. Dramatic results in uncontrolled experiments (such as the results of the
introduction of penicillin treatments in the 1940s) could also be regarded as this type 
of evidence

III Opinions of respected authorities, based on clinical experience, descriptive studies, 
case reports, or reports of expert committees
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Furthermore, Pocock et al. reported that publication in a well-respected journal
does not always correlate with ideal study design. They reviewed 45 reports
published in the BMJ, the New England Journal of Medicine, and The Lancet. 
They found that the interpretation of large amounts of data was complicated by 
a common failure to specify in advance the intended size of a trial or statistical
stopping rules for interim analyses, leading to a tendency to exaggerate treatment
differences [6]. This problem is not unexpected: the reviewers assessing the 
study report might be experts in the disease area but they are not necessarily
statistical experts, or experts in trial design. 

2. How relevant is the question being asked by the study?

The introductory paragraph of a study report should state the exact question
being asked. The reader then has to decide on the importance and relevance of
the research question to the way he/she conducts his/her daily practice: 

• Will the answer to the question alter the way in which patients 
are managed? 

• Does the question relate to a substantial proportion of their routine
practice or to a minority of patients? 

• Has standard treatment changed since the beginning of the trial, 
so that the trial results are less relevant to current day practice? 

An example of problems that can arise in prolonged trials was seen in a substudy
of the very large ALLHAT (Anti-hypertensive and Lipid-lowering Treatment to
Prevent Heart Attack Trial) study. In ALLHAT, patients with well-controlled
hypertension, moderate dyslipidemia, and an additional cardiovascular risk factor
were randomized to receive either pravastatin (40 mg daily) or “usual care” [7].
The aim of the study was to show that the addition of a statin to usual care would
reduce all-cause mortality (the primary outcome measure) and/or coronary heart
disease mortality (the secondary outcome measure). 

A total of 10,355 patients were randomized to this substudy and followed for up
to 8 years, but the substudy failed to show a significant difference in primary or
secondary outcome measures. One of the possible explanations for this somewhat
disappointing result was that the usual care in most practices included statin
therapy for secondary prevention, and 26% of patients in the usual care arm were
on a statin at the end of the trial. Such a significant treatment crossover was
unlikely to have been expected at the beginning of the study, demonstrating how
practice patterns can change faster than a trial can be completed and published. 
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3. Did patient selection particularly influence the results?

If, after scanning the abstract, you decide to interrogate the paper further, it is
useful to focus on patient selection criteria before proceeding to the results. 
No trial can be properly evaluated without a detailed understanding of the study
population, but authors often fail to adequately define and account for the types of
subjects finally recruited to a study. The team designing the trial has to find the
proper balance between restricting eligibility in order to obtain a relatively uniform
group of subjects and minimizing exclusion criteria so as to make the results
relevant to more patients. Many trials keep a screening register or log of study-
eligible patients, as well as a log of those patients finally randomized. Both of these
figures should be reported in the study manuscript. The ratio of patients screened
to those recruited can often suggest whether the inclusion/exclusion criteria were
broad enough to capture a large proportion of all patients with the disease.

Consider the AWESOME (Angina With Extremely Serious Operative Mortality
Evaluation) clinical trial, which was designed to compare long-term survival in
patients with medically refractory myocardial ischemia and a high risk of adverse
outcomes with either a surgical revascularization (coronary artery bypass grafting)
or a percutaneous intervention strategy, including stents [8,9]. This trial screened
22,662 patients, but randomized only 454, suggesting that the study focused on
only a very specific subgroup of patients with coronary artery disease. Therefore,
the results of this study are relevant to only a small cohort of all ischemic patients,
and cannot be easily extrapolated to daily practice.

4. What do the recruitment rate and timing of publication tell us?

It is interesting to note when patients were recruited and when the study completed
enrollment. If recruitment rates were much slower than the expected presentation
rate of similar patients in normal practice, one might discuss the following points:

• Were the entry criteria too narrow, making recruitment difficult?
• Was the treatment protocol overly complicated, discouraging recruitment?
• Were the financial incentives for patient recruitment important? 

Financial incentives are usually unnecessary if the study addresses 
an issue that is important to both patients and clinicians.

• Were the correct centers chosen to recruit for this study, or was 
the subject of little interest to recruiting centers?

• Was recruitment slowed by an interim amendment to the protocol
requested by the data and safety monitoring board, suggesting 
safety or statistical concerns at an early stage of the study?
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The answers to some of these questions – such as the types of recruiting centers,
the numbers recruited by each center, and whether the project was commercially
funded – are often found in the appendices or notes. Issues such as commercial
funding are also worth knowing since such studies tend to have higher recruitment
rates than non-commercially funded projects. 

The time between the end of follow-up and the time of publication can also be of
interest. Most high-impact journals publish items 6–12 months after acceptance,
unless fast tracked. Fast-tracked sections are available in some journals for trials
addressing very topical or key issues, or for a major breakthrough. Editors of these
sections aim to review and publish a report in as little as 2 months. 

On the other hand, studies with results that are difficult to interpret, or with
negative results, might be submitted or accepted for publication much later 
than positive, high-profile studies. The delay could be due to many suggestions
from the reviewers – asking for additional work to improve the publication before
acceptance – or to a number of previous journals considering and then rejecting 
the paper, each consideration taking 4–8 weeks, since authors are restricted 
to submitting the article to only one journal at a time. A journal might provide
reviewers’ comments on a web site, which can provide additional insights about
the reasons for a lag in publication time, such as requests for additional patient
numbers or reanalysis using other statistical methods.

5. Are the observed treatment differences due to systematic

error (bias) or confounding?

In a clinical trial, the observed treatment effect regarding the safety and efficacy
of a new drug can appear to be clinically and statistically significant and yet might
be due to the result of systematic error or bias within the study [10]. Even the most
careful measurement and elegant statistical analysis can not salvage a biased
clinical trial, although learning about the mechanism of the bias might in itself be
of scientific merit. The most common types of bias in clinical research are those
related to subject selection and outcome measurement. A reader should therefore
review a report with a question about whether such bias might have been
prevented during the design and conduction. For example, did the patients in the
trial get recruited in a clinical setting unrepresentative of the wider patient
population – eg, patients only recruited in one country with highly developed
medical services? This would then cause a geographical bias such that the results
might not be reproducible in a different national setting. In addition, exclusion of
subjects from statistical analysis because of noncompliance or missing data could
bias an estimate of the true benefit of a treatment, particularly if more patients
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were removed from analysis in one group than the other. In randomized trials,
outcomes should be compared among groups based on the original treatment
assignment rather than based on the treatment received, as results from strategies
other than intention-to-treat analysis are subject to potential bias.  

Confounding is another factor that can contribute to the observed treatment
difference in an outcome variable. Confounding occurs when a baseline
characteristic (or variable) of patients is associated with the outcome but unevenly
distributed between treatment groups. As a result, the observed treatment difference
from the unadjusted (univariate) analysis can be explained by the imbalanced
distribution of this variable. When reading a report, the most useful way to detect
possible confounding factors is to examine the distribution of baseline characteristics
by treatment group, to assess if the treatment groups are comparable. 

6. Are negative trials worth reading in detail?

A negative clinical trial is one in which the observed differences are not large
enough to satisfy a specified significance level (usually a P < 0.05 threshold), so 
the results are declared to be statistically nonsignificant. The tendency to defer
publication of a negative trial creates so-called publication bias, with more
positive-result studies being published. Studies that have yielded disappointing or
negative results are less likely to be presented at scientific meetings, published
promptly, or published in high-impact journals.

This reporting bias can imply that medical treatments are more useful than they
really are. Despite evidence identifying investigators as the main cause of
publication bias, investigators continue to claim that editorial bias is the main
reason for nonpublication of negative or null results, and that this is why they 
do not submit negative findings. However, a study examining publication decisions
for reports of controlled trials in JAMA found little evidence of a positive
publication bias in that journal [11].

Thus, leading editors have an interest in publishing well-conducted negative or
neutral trials. For the reader, it now becomes important to know not only which
therapies benefit the management of certain diseases, but also those that do not.
An example of a negative trial changing practice was the GUSTO-IV (Global Use
of Strategies to Open Occluded Coronary Arteries) study [12]. This trial showed
that abciximab therapy did not confer benefit on patients with acute coronary
syndromes not needing urgent coronary investigations. Prior to this study,
abciximab had been shown to be beneficial for almost all acute coronary syndrome
populations, but GUSTO-IV showed that there was an increase in bleeding
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complications with this treatment without significant clinical benefit, prompting
physicians to weigh the risk–benefit ratio more carefully. Therefore, there are
lessons to be learnt from negative/neutral trials.

7. Was the study negative because it was inadequately powered?

With increased publication of trials with negative or neutral results, it is important
to be clear whether the trial was negative due to errors in sample-size calculations
or whether the new treatment strategy really was no different to the standard
treatment. A trial should be large enough to detect a worthwhile effect as
statistically significant if it exists, or to give confidence in the notion that the new
treatment is no better than the control treatment. 

Calculation of sample size is based on the expected difference in the primary
outcome measure between the two groups being assessed, and the baseline event
rate expected in the standard therapy group. The expected difference should also
be worthwhile in real practice. For example, a 1% reduction in event rates is 
a useful difference to pursue if the event rate with standard therapy is around
5%–10%, but would be less meaningful if the event rate with standard therapy 
is 40%. 

Underpowered studies are common because expectations are over-ambitious and
additional patients might need to be recruited, but the funding to extend the study
might not be available. Underpowered studies can lead to a Type II or beta error,
ie, the erroneous conclusion that an intervention has no effect when the trial size
is inadequate to allow a comparison. In contrast, a Type I or alpha error is the
conclusion that a difference is significant when in fact it is due to chance. 
By convention, the threshold for considering a result as significant is set higher
than for considering a study to be nonsignificant, therefore favoring traditional
therapies over new therapies that lack established side-effect profiles [13]. 

8. Were the outcome measures reported appropriately?

A study’s outcome measures need to be clearly defined. Standardized
measurement criteria for outcomes are needed for the results to have clinical
relevance. If multiple outcome measures are being collected, a precise statement
should explain how these measures are to be prioritized and reported relative to
the study objectives. 
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For example, one patient might have many adverse events during a study. The final
statistical results for the study can then be based on a count of all the events, the
patient’s first event, or the worst event the patient suffered. The latter is important
because some outcomes, eg, death, are more important than others, eg, an increase
in the dose/number of medicines used to control symptoms. If all events are being
measured, care must be taken to understand this, otherwise it can lead to a
misunderstanding that generally the trial had high rates of adverse events. 

When reviewing the results, it is important to ensure there are no hidden
detrimental effects or other outcomes that might outweigh the benefits of the
intervention under investigation. For example, authors often present the rates of
death and then a combined rate of death or myocardial infarction (MI). If there is
a 2% decrease in the death rate for the new treatment but only a 1% decrease for
the combined endpoint, then it is important to consider the fact that there were
more MIs with the new treatment. This is not necessarily at odds with the new
treatment being beneficial, since if substantially fewer patients die then the patients
living longer might have an increase in nonfatal complications, such as MI. 

More commonly the situation is reversed in studies, with disease-specific
outcomes being improved, but with (albeit nonsignificant) mortality rates for
patients in the new treatment arm increasing. In meta-analyses combining the
results of many such trials, two outcomes (such as death and relief of symptoms)
can go in opposite directions, making the value of such therapies doubtful. It is
also important that side-effects and their frequencies are presented – such as
bleeding, weight gain, or drug interactions. These measures can easily sabotage 
an otherwise beneficial treatment. 

Another way to tip results in favor of a new therapy is to only present the results
from patients who were fully compliant with the new treatment protocol (per
protocol analysis). However, excluding information from patients withdrawing 
from the study, perhaps because of side-effects, can favor the therapy that is more
likely to cause side-effects. This is because the remaining patients are often
younger and healthier, and they are able to continue taking medications despite 
mild side-effects, unlike more elderly patients or those with coexisting illnesses. 

If the new therapy caused more side-effects, then in a per protocol-based analysis
that group might have a somewhat healthier profile and hence less adverse
outcomes from the disease process. The ideal report would include all patients in
the analysis after they are randomized, regardless of what happens later (intention-
to-treat analysis) – such as not being prescribed the treatment, being switched to
the other treatment group, or only being partially compliant with the treatment.
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Table 2. Items that should be included in reports of randomized trials [1]. Adapted from Reference [2].

Item Comment

Heading

Subheading

Descriptor

Title Identify the study as a randomized trial

Abstract Use a structured format

Introduction State the prospectively defined hypothesis, clinical objectives, and planned 
subgroup analyses

Methods

Protocol Describe: 

• The planned study population, together with inclusion or exclusion criteria

• Planned interventions and their timing

• Primary and secondary outcome measure(s) and the minimum important difference(s),
and indicate how the target sample size was projected

• The rationale and methods for statistical analyses, detailing the main comparative
analyses and whether they were completed on an intention-to-treat basis

• Prospectively defined stopping rules (if warranted)

Assignment Describe:

• The unit of randomization (eg, individual, cluster, geographic)

• The method used to generate the allocation schedule

• The method of allocation concealment and the timing of assignment

• The method to separate the generator from the executor of assignment

Masking (blinding) Describe:

• The mechanism (eg, capsules, tablets)

• Similarity of the treatment characteristics (eg, appearance, taste)

• Control of the allocation schedule (ie, the location of code during trial and when broken)

• The evidence for successful blinding among the participants, the person doing the
intervention, the outcome assessors, and the data analysts

Results

Participant flow Provide a trial profile summarizing the participant flow, numbers, and timing and follow-up
of randomization assignment, interventions, and measurements for each randomized group

Analysis State the estimated effect of intervention on primary and secondary outcome measures,
including a point estimate and a measure of precision (confidence interval)

Discussion State the results in absolute numbers when feasible (eg, 10/20, not 50%)

Present summary data and appropriate descriptive and interferential statistics in sufficient
detail to permit alternative analyses and replication

Describe prognostic variables by treatment group and any attempt to adjust for them

Describe deviations from the planned study protocol together with the reasons

State specific interpretations of study findings, including sources of bias and imprecision
(internal validity) and discussion of external validity, including appropriate quantitative
measures when possible

State general interpretations of the data in light of the totality of the available evidence
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9. What are the implications of the study results and discussion?

In the discussion section of the article, readers should expect to find a balanced
interpretation of the results, taking into account any previous work. A guide to 
the format of a submission of a clinical trial is shown in Table 2. The biological
plausibility of the results should be addressed, along with the impact on current
medical practice. Although the authors will offer their interpretation of the data, the
reader must draw their own conclusions about the importance and impact of the
results compared with conventional treatment strategies. A significant report may
lead to changes in guidelines, but this usually requires either a very large definitive
study or at least two large independent trials supporting the same conclusion. 

The conclusions of the publication might be biased or restricted in commercially
funded studies. Major journals have guidelines for the disclosure of industry’s role
in a clinical trial. These guidelines require the authors to disclose full details of
their role (and the sponsors) in a study. Some journals insist that the responsible
author sign a statement indicating that he or she accepts full responsibility for the
conduct of the trial, has had full access to the data, and has control of the decision
to publish, independent of the commercial sponsors funding the work [14].

10. What were the limitations of the study?

Having decided to read the full study manuscript, it is essential to appreciate 
the limitations of a study. Indeed, most discussions with peers about a recent 
trial report are won by the person who understands the flaws of a study, in
addition to the positive implications. The authors of a study are usually aware of
most of their study’s limitations, but often they will only write about those that can
be defended. While these are valid tactics, the best investigators will discuss all the
limitations and recommend how future studies should be conducted to overcome
these. Some limitations are inherent to most studies – such as the phenomenon
that most participants in a trial are generally healthier as a result of exclusion
criteria – and so the ability of study results to be generalized should also be
discussed. A balanced discussion suggests the mark of careful and considerate
clinical scientists and researchers, and lends the overall report more credibility.

Conclusion

Inevitably, there is far more information being published then can be read and
committed to memory. It is therefore natural to restrict our focus to titles relevant
to our own work. For these titles, we scan the abstract and decide whether to read
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the full paper. Mental notes can then be made about the number of patients
enrolled, the duration of follow-up, and the dose of the new therapy being tested.
With a little more effort, a few more points can also be easily gleaned, allowing 
a more considered evaluation of the significance of a clinical trial report, which in
turn might make the results more memorable.
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Meta-Analysis

Duolao Wang, Felicity Clemens, 

and Ameet Bakhai

Data for the assessment of new therapies may initially come
from several modest-sized studies. It is not uncommon for
these data to be either contradictory or to vary regarding the
size of the treatment benefit. In situations like this, a meta-
analysis might be valuable. A meta-analysis is a systematic
method for combining the results of multiple similar studies 
to allow more accurate conclusions to be drawn from a larger
pooled number of subjects. Although the complexity of the
methods used for a meta-analysis can be a limitation, a 
well-conducted meta-analysis provides a powerful guide 
to the benefits of a therapy and may pave the way for a large,
definitive trial. In this chapter, we discuss how the meta-
analysis technique is gaining increasing credibility and
attracting more scrutiny, making it useful for all researchers
and clinicians to appreciate the essence of this method.

■■❚❙❘ Chapter 38
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What is a meta-analysis?

Gene Glass first used the term ‘meta-analysis’ in 1976 to refer to a philosophy, 
not a statistical technique. Glass suggested that reviewing the literature in itself
was a research technique and should therefore be performed as systematically as
more formal research. Since then, the term meta-analysis has meant literally an
analysis of several individual analyses or studies, or an amalgamation of previously
published and unpublished research on a specific intervention. To perform a
meta-analysis, the results of two or more independent studies are combined in 
a meaningful way that still addresses the original clinical question. The output
from a meta-analysis typically consists of an overall mean treatment difference,
derived from a weighted average of the treatment difference from each study and
a confidence interval. The weighting given to each study depends on its quality,
precision, and size. 

For example, we recently conducted a meta-analysis on the impact of beta-blockers
on mortality in patients with heart failure. Twenty-two relevant studies were
identified. While the largest single trial had 3,991 patients and the smallest had just
12 patients, the meta-analysis had a total of 10,480 patients [1]. Table 1 displays the
differences in the mortality rates of 14 of the individual studies that had at least one
death in each treatment arm. The meta-analysis shows that beta-blockers reduce
the odds of death by about one-third [1], an effect somewhat different from the
results of many of the 14 studies. 

What is the aim of a meta-analysis?

The aim of a meta-analysis is to estimate the treatment effect with the greatest
possible power and precision [2–5]. By including the study populations of several
trials, a real treatment difference can be detected more easily due to an increased
sample size, and the precision of estimating that difference is improved. A well-
conducted meta-analysis is time consuming and expensive, but it is still unlikely to
be as expensive as conducting a new, larger trial.

What basic steps are involved in a meta-analysis?

There are five steps involved in a meta-analysis [4,6]:

Step 1: Formulation of the study question

The aim of the analysis should be specific and clear, for example: 
“Do beta-blockers reduce mortality in patients with heart failure when used in
addition to standard therapies?”

440
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Primary Design Treatment (dose) Mean age Follow-up All-cause mortality

author/ (years ± SD) (years) Treated events/ Control events/

trial name total events total events

Anderson RCT Metoprolol 51 ± 3 1.6 5/25 (20.0%) 6/25 (24.0%)
(12.5 mg up to 50 mg 
twice daily)

Engelmeier RCT, Metoprolol 51 ± 8 0.8 1/9 (11.1%) 2/16 (12.5%)
double-blind (6.25 mg up to 100 mg 

once daily over 
4–6 weeks)

MDC RCT, Metoprolol 49 ± 12 1.5 23/194 (11.8%) 21/189 (11.1%)
double-blind (10 mg up to 150 mg 

over 7 weeks)

Fisher RCT, Metoprolol 63 ± 10 0.5 1/25 (4.0%) 2/25 (8.0%)
double-blind (6.25 mg up to 50 mg 

twice daily)

CIBIS RCT, Bisoprolol 60 ± 1 1.9 53/320 (16.6%) 67/321 (20.9%)
double-blind (1.25 mg up to 5 mg 

once daily over 4 weeks)

Bristow RCT, Bucindolol 56 ± 2 0.2 4/105 (3.8%) 2/34 (5.9%)
double-blind (12.5 mg, 50 mg 

and 200 mg)

Krum RCT, Carvedilol 56 ± 2 0.3 3/33 (9.1%) 2/16 (12.5%)
double-blind (25 mg twice daily)

PRECISE RCT, Carvedilol 61 ± 11 0.5 6/133 (4.5%) 11/145 (7.6%)
double-blind (25 mg up to 50 mg, 

twice daily)

US Carvedilol RCT, Carvedilol 58 ± 12 0.5 22/696 (3.2%) 31/398 (7.8%)
double-blind (6.25 mg up to 

25–50 mg twice daily 
over 2–10 weeks)

Carvedilol RCT, Carvedilolb 2/70 (2.9%) 2/35 (5.7%)
efficacya double-blind

Colucci RCT, Carvedilol 55 ± 11 1 2/232 (0.9%) 5/134 (3.7%)
double-blind (12.5 mg up to 50 mg 

twice daily over 6 weeks)

ANZHFG RCT, Carvedilol 67c 1.6 20/207 (9.7%) 26/208 (12.5%)
double-blind (3.125 mg up to 25 mg 

twice daily over 
2–5 weeks)

CIBIS II RCT, Bisoprolol 61c 1.3 156/1327 (11.8%) 228/1320 (17.3%)
double-blind (1.25 mg up to 10 mg 

over 5 weeks)

MERIT-HF RCT, Metoprolol 64 ± 9 1 145/1990 (7.3%) 217/2001 (10.9%)
double-blind (12.5 mg up to 200 mg)

aCarvedilol efficacy in severe heart failure. Data presented at the Cardiorenal Advisory Panel Meeting of the US Food

and Drug Administration. Protocol 239 (May 2, 1996). bNo dose is available for this study. cNo SD is available for this

study. ANZHFG = Australia–New Zealand Heart Failure Group; CIBIS = Cardiac Insufficiency Bisoprolol Study; CIBIS II =

Cardiac Insufficiency Bisoprolol Study II; MDC = Metoprolol in Dilated Cardiomyopathy Trial; MERIT-HF = Metoprolol

CR/XL (controlled release [AstraZeneca’s Toprol XL]) Randomized Intervention Trial in Heart Failure; PRECISE =

Prospective Randomized Evaluation of Carvedilol in Symptoms and Exercise; RCT = randomized controlled trial; 

SD = standard deviation; US Carvedilol = US Carvedilol Heart Failure Study Group.

Table 1. Characteristics and results of 14 trials on the effect of beta-blockers on mortality in heart 

failure patients [1].

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 441



Step 2: Literature search 

To answer the study question, it is important to capture as many relevant studies
as possible. The methods used to gather information for a meta-analysis are shown
in Table 2.

In the beta-blocker study we used a computerized bibliographic method to search
the MEDLINE database from January 1998–January 2000 using keywords 
and phrases such as ‘beta-blocker’, ‘clinical trials’, and ‘congestive heart failure’.
We also searched reports of abstracts from conferences on cardiology and heart
failure for the period of 1996–2000. 

Step 3: Study selection

Only studies that have a similar design can be retained from all of the studies
identified. While formal match-scoring systems (systems to evaluate how similar
the studies are) exist and can allow us to control the contribution that a study
makes to the meta-analysis, some simple criteria can be used to match the studies
to be combined. These are as follows:

• trial design, eg, parallel versus crossover, randomized controlled trials
(RCTs) versus non-RCTs

• included patient populations, eg, heart failure patients with or without
coronary artery disease

Table 2. Sources of information for meta-analyses.
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• Search for peer-reviewed material in electronic medical databases, such as:

– MEDLINE (including Pre-MEDLINE)
– Embase
– BIDS
– ISI
– The Cochrane Collaboration Library

• Review published books that are relevant to the subject or conference material from meetings devoted to the
subject, such as abstract books

• Search specific Internet sites relevant to the disease, including national and international societies of specialists
(for beta-blockers, the American College of Cardiology or the European Society of Cardiology web sites) and
clearing houses of guidelines for the treatment of that disease/condition

• National or local registries and further unpublished studies can also contribute to the meta-analysis. 
For these, approach recognized experts and leading medical centers in the specific disease area

• Communicate with the research and clinical affairs departments of specialist pharmaceutical companies 
to gain published or unpublished study data

• Do a general search of Internet sites using medical search engines, such as OMNI, and general search engines
such as:

– www.Google.com
– www.AltaVista.com
– www.Yahoo.com
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• excluded patient populations, eg, heart failure patients over 65 years old 
or with renal disease

• treatment strategies, eg, beta-blockers versus placebo or diuretics
• primary outcomes, eg, mortality or hospital readmissions

In general, meta-analyses favor randomized double-blind trials, as biases are
minimized or distributed evenly by the process of random allocation. More liberal
inclusion criteria can make the studies broader (allowing retrospective or 
non-randomized studies) but the conclusions might be more subjective [5].
Ideally, the inclusion criteria must aim to address the main research question [6].
For example, a study looking at the treatment effect on quality of life should
exclude trials that do not use quality of life as an outcome. 

The researcher should also aim to identify negative or indifferent studies that
might not have been published, or studies awaiting publication. Research registers
can be consulted and well-known researchers can be contacted directly. Hospitals
with an interest in the condition under examination might be aware of ongoing
trials or unpublished data. 

Publication bias

Publication bias is an immediate problem facing researchers conducting a
thorough meta-analysis, since journals prefer to publish trials with significant
positive findings rather than trials with negative or indifferent findings. The
existence of publication bias can be inferred by constructing a funnel plot [7]. 

A funnel plot is a simple scatter plot of the treatment effects (such as odds ratios
[ORs]) estimated from individual studies on the x-axis, against a measure of the
precision of each study (such as sample size or standard error) on the y-axis. 
The name ‘funnel plot’ arises from the fact that estimation of the true treatment
effect by each component study becomes more precise as the sample sizes of the
component studies increase. Therefore, small studies will produce estimates of
the effects that will scatter more widely at the bottom of the graph, and will
converge for larger studies if these are well matched. In the absence of publication
bias, the plot should resemble a symmetrical inverted funnel. A funnel plot for the
data in Table 1 is given in Figure 1; it shows no evidence of asymmetry or
publication bias. For more about publication bias and funnel plots, please refer to
references [4] and [7].

Step 4: Data extraction and quality assessment

Once the final set of studies is identified, the relevant information must be
extracted from each study and an assessment of the quality of the available data
must be made. Information on study design, patient characteristics, treatments,
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study duration, and primary and other outcomes should be extracted in a standard
form to be used for further statistical analysis.

Step 5: Statistical analysis

The final step of a meta-analysis is to combine the information from the 
different studies by employing appropriate statistical methods to enable
interpretation of the pooled effect. This combination might take place at the level
of individual patient data or at the level of aggregate trial results and outcomes of
interest. There are two basic data requirements for a meta-analysis of aggregate
trial results: 

• A common measure of treatment effect, such as OR, risk ratio, or mean
difference, must be used to compare the different treatment strategies
used in each study. 

• The variance (or standard error) of the treatment effect must be
calculated for each study.

In the beta-blocker study example, the measure of the chosen treatment effect was
the OR for the mortality of patients on beta-blockers versus placebo, a commonly
used statistic [8].
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Figure 1. Funnel plot of the data from the 14 trials displayed in Table 1. The plot resembles a symmetrical

inverted funnel, suggesting no publication bias in this meta-analysis.

4,000 

3,500 

3,000

2,500 

2,000

1,500

1,000

500 

0

Sa
m

pl
e 

si
ze

 (s
ub

je
ct

s)

| | | | | | |
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Odds ratio

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 444



What is the appropriate statistical method?

Two types of models are commonly used to conduct a meta-analysis: the fixed-
effects model and the random-effects model. These are each used under different
circumstances, but both create a combined estimate of treatment effect.

The fixed-effects model

The fixed-effects model assumes that the meta-analysis is trying to estimate one
overall treatment effect for all the studies included in the analysis. This implies
that the researcher believes that there is a common ‘true’ treatment effect underlying
the studies and that the results of these studies will vary randomly about this true
effect. This model can be used when considering studies that match closely in
design and methodology. Table 3 demonstrates the computing procedures of one
of the fixed-effects models (the Woolf method) [9]. By applying this model to the
data in Table 1, the results generated for the estimated pooled OR and its 95% CI
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Table 3. A fixed-effects model (the Woolf method) for computing a pooled odds ratio (OR) estimate 

and its 95% CI based on 2 × 2 tables.

Data structure:

Suppose there are k studies, each having data in the
form of a 2 × 2 table:

Event Total

Yes No

Treatment A a
i

b
i

a
i
+ b

i

Treatment B c
i

d
i

c
i
+ d

i

Total a
i
+ c

i
b

i
+ d

i
n

i

Assumptions:

ORs are identical and fixed across all studies, 
and differences in the ORs are only due to 
within-study variation

Computing steps:

(1) Calculate natural logarithm of the OR 
for the ith study:

In(OR
i
) = In

(2) Calculate the standard error (SE) of ln(OR
i
):

SE
i 
=

(3) Compute the weighting for each study:

w
i 
=

(4) Calculate the pooled logarithm of the fixed-effects
OR:

In(OR
i
) = 

(5) Calculate the standard error for In(OR
F
):

SE
F
= 

(6) Do an antilogarithm conversion to obtain the
estimate of the pooled OR: 

OR
F 
= exp(In(OR

F
))

(7) Calculate the 95% CI for OR
F
:

exp(In(OR
F
) ± 1.96SE

F
)

Interpretation:

(1) OR
F
represents the combined treatment effect

(2) The 95% CI (exp(In(OR
R
) ± 1.96SE

R
)) gives the

possible range of the true treatment effect. If the CI
does not include the value I, then the average effect
of treatment B is different from that of treatment A.
If this is not the case, there is no evidence that the
effects are different

a
i
× d

i

b
i
× c

i

1
SE

i
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+ + +
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1
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∑
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∑
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∑
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are:  OR
F

= 0.65, 95% CI 0.57, 0.74. The results of the meta-analysis are also plotted
in Figure 2, indicating that the use of beta-blockers, compared with placebo,
reduced the odds of death by 35% with a range of 26%–43%.

The random-effects model

The random-effects model assumes that there is a different underlying effect for
each study and takes this into account as an additional source of variation. This
means that the studies included in the meta-analysis do not necessarily estimate
the same treatment effect, since some features of a study’s design, such as the
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Figure 2. Meta-analysis of the effect of beta-blockers on mortality in heart failure patients. 
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The figure shows the odds ratios (ORs) and their 95% confidence limits for 14 randomized trials studying the effect

on mortality of beta-blockers compared with controls. The blocks represent the point estimates for each trial and

the horizontal lines the 95% CIs. The size of each block is approximately proportional to the statistical weight of the

trial in the meta-analysis. The diamond represents the pooled estimate and its 95% confidence interval. The ORs

are displayed on a log scale so that the differences in the CIs can be easily seen. The solid vertical line represents

no difference in the treatment effect between two treatments. The heterogeneity test statistic (Q) is 8.44, and, since

k – 1 = 13, Q < k – 1, which suggests no evidence of heterogeneity amongst the trials (see Table 4). 
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populations included, do not fully match the other studies. These different effects
are amalgamated and the meta-analysis is used to estimate an overall effect.
Therefore, a random-effects model gives more weight to smaller studies and its
overall estimate has a wider confidence interval [2,3,5,9]. Some authors regard
this approach to be conceptually problematic because one of the fundamental
assumptions inherent in this model is that the studies included are a random
sample from a hypothetical population of studies [3]. 

The procedures for using the DerSimonian–Laird random-effects model are
described in Table 4, where they are applied to the data from Table 1. A test for
heterogeneity (the difference in beta-blocker effect on mortality between studies)
for this meta-analysis was performed. The value of the heterogeneity test statistic
(Q) was 8.44, and, since k – 1 = 13, Q < k – 1, which indicates that the included
studies are very similar (there is no evidence of statistically significant
heterogeneity; see Table 4). The pooled estimate of the effect of beta-blocker
treatment on mortality using the random-effects model is: OR

R
= 0.65, 95% CI

Table 4. A random-effects model (the DerSimonian–Laird method) for computing a pooled odds ratio (OR)

estimate and its 95% CI based on 2 × 2 tables.

Data structure:

Same as in Table 1

Assumptions:

ORs are different across studies. Differences in ORs
are not only due to within-study variation but also to
between-study variation

Computing steps:

(1) Calculate the heterogeneity test statistic, Qa:
Null hypothesis: the k underlying ORs are equal

Test statistic: Q = ∑
i

k

=1
w

i 
(OR

i  
– OR

F
)

Definitions of w
i
, OR

i
, OR

F
are the same as in Table 3.

(2) Calculate the between-study variability:

τ = max    0,

(3) Calculate the weighting for each study:

(4) Calculate the pooled logarithm of the 
random-effects OR estimate:

In(OR
R
) = 

(5) Calculate the standard error (SE) for In(OR
R
):

SE
R

= 

(6) Do an antilogarithm conversion to obtain 
an estimate of the pooled OR: 

OR
R 
= exp(In(OR

R
))

(7) Calculate the 95% CI for OR
R
:

exp(In(OR
R
) ± 1.96SE

R
)

Interpretation:

(1) If Q ≥ k – 1, then there is evidence of statistical
heterogeneity, ie, the ORs are different across 
the studiesa. Otherwise, ther is no evidence that 
the ORs are different

(2) OR
R

gives the combined treatment effect:  
exp(In(OR

R
) ± 1.96SE

R
) gives the possible range of

the true treatment effect and, if the 95% CI does
not include the value 1, then the pooled effect of
treatment B is different from that of treatment A

Q – (k – 1)

∑
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a For the formal statistical test, please refer to reference 3.
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0.57, 0.74. For the data in Table 1, the between-study variability is zero (τ = 0; see
Table 4), therefore these results are identical to those from the fixed-effects model.

Table 5 compares the meta-analysis of 10 hypothetically heterogeneous trials using
the Woolf fixed-effects and DerSimonian–Laird random-effects models. Testing
the random-effects model for heterogeneity gives Q = 34.66, and, since k – 1 = 9,
Q > k – 1, which indicates that the 10 studies are statistically heterogeneous. The
estimated between-study variability is 0.30 (τ = 0.30). The results from the meta-
analysis show that the random-effects model gives smaller studies more weight
and yields a wider confidence interval for the pooled OR than occurs with the
fixed-effects model. 

The heterogeneity test (Q) for the random-effects model analysis was 34.66, and, since k – 1 = 9, Q > k – 1, which

indicates that the 10 studies are statistically heterogeneous. The fixed-effects model weights each study according 

to its sample size, so the largest trial has the most weight. On the other hand, the weightings generated by the

random-effects model are less varied, giving relatively more weight to smaller studies, yielding a wider confidence

interval for the pooled odds ratio than occurs with the fixed-effects model.

CI = confidence interval; OR = odds ratio.
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Table 5. Meta-analysis of 10 hypothetical trials using the Woolf fixed-effects model and the DerSimonian–Laird

random effects model.

Study Treated events/ Control events/ Odds ratio Fixed-effects Random-effects

total events total events (95% CI) model weighting model weighting

1 15/130 15/135 1.04 6.65 2.21
(0.49, 2.23)

2 21/400 17/135 0.38 8.51 2.39
(0.20, 0.75)

3 14/60 24/50 0.33 5.77 2.11
(0.15, 0.75)

4 6/40 18/40 0.22 3.37 1.67
(0.07, 0.63)

5 12/1010 35/760 0.25 8.75 2.41
(0.13, 0.48)

6 138/1400 175/765 0.37 64.73 3.16
(0.29, 0.47)

7 15/500 20/525 0.78 8.28 2.37
(0.40, 1.54)

8 6/110 2/105 2.97 1.46 1.01
(0.59, 15.06)

9 65/150 40/100 1.15 14.53 2.7
(0.69, 1.92)

10 5/70 2/35 1.27 1.34 0.96
(0.23, 6.90)

Combined OR 0.47 0.55
(95% CI) (0.39, 0.55) (0.36, 0.85)
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There will only be a substantial difference in the pooled treatment effect
computed by the two methods if there is considerable heterogeneity between the
component studies. Whether the fixed- or random-effects model should be used
for a specific meta-analysis depends on the presence of statistically significant
heterogeneity (evaluated by formal heterogeneity testing). The random-effects
model is usually recommended when statistically significant heterogeneity is
present between study results. More importantly, the source of heterogeneity
should be investigated to identify the types of clinical heterogeneity in terms of, eg,
patient selection, baseline disease severity, dose schedules, and years of follow-up,
that might explain all or part of the statistical heterogeneity [10]. In the absence
of statistically significant heterogeneity, the fixed-effects model is advocated [4].

What key objectives are there when results are presented?

In any meta-analysis it is important that the account of the analysis is transparent
and that the reasons for including and excluding various studies and other data are
documented. Both the sources and the search strategy for this evidence need to be
described and the criteria used to assess the quality of the included studies should
be detailed. By doing this, any bias inadvertently caused by the researcher due to
his/her method of study selection is transparent and the reader can appreciate the
limitations of the evidence base, the efforts made to address these limitations, and
how robust the inferences drawn from the results are. The results of a meta-analysis
can be best presented in a graph like Figure 2.

What are the main concerns about meta-analysis?

Meta-analysis is a useful way of combining available evidence. The most common
criticism is that the pooled estimate is not a meaningful measure and it is not
applicable to ‘real life’ medical practice for a number of reasons [4]. These reasons
include differences between studies, poor quality of some or all of the studies
included, and a selection bias towards published studies. Essentially, the criticisms
are that when the data come from several separate studies, adjustments might not
account for the differences between the studies.

The second problem, right from the outset, is that in a meta-analysis it is
impossible to know which studies are missing because they were never captured,
even at the stage of screening for generally relevant studies. An inexpert search of
the literature might not identify all relevant studies [4,6]. 
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Thirdly, each of the studies included in the meta-analysis will have their own
problems with internal validity [4,6]. The biases existing within each study will be
passed on to the meta-analysis and they will affect its conclusions. It is therefore
essential that study quality is considered when a preliminary literature search 
is performed.

Lastly, a meta-analysis is usually performed when the results of modest studies
conflict or there is a large variability in the size of the treatment effect. If data
from large trials with matching criteria were available, a meta-analysis would not
be needed. 

While meta-analyses are increasingly being performed in medical research, 
the analysis is only as good as the team performing the work. The art of this science
is still developing in an attempt to overcome several limitations. A strong 
meta-analysis will pay careful attention to the inputs (ie, patients, endpoints, and
trial design) and will be clear about the methods and assumptions used. Finally,
individuals who are contemplating performing a meta-analysis are advised 
to work together with researchers and statisticians with experience in this field.

Conclusion

The results of a meta-analysis can provide a significant weight of evidence 
and, although the complexity of the method is a limitation, this analysis allows
clinical questions to be addressed in the absence of data from a large, definitive
randomized trial. Where evidence for the benefit of a new treatment over
standard therapy conflicts between modest-sized studies or there is variation 
in the size of the benefit, a meta-analysis gives a more accurate measure of the 
true effect of the therapy or intervention. Meta-analyses are therefore here to
stay, and are being performed in many specialties other than healthcare. There is
therefore an increasing need for researchers to be able to appreciate the place of
meta-analyses and the results they generate, bearing in mind their complexities.
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ANOVA (analysis of variance)

A statistical method for comparing several means by comparing variances. It
concerns a normally distributed outcome (response) variable and a single categorical
(predictor) variable representing treatments or groups. ANOVA is a special case
of a linear regression model by which group means can be easily compared. 

Bias

Systematic errors associated with the inadequacies in the design, conduct, 
or analysis of a trial on the part of any of the participants of that trial (patients,
medical personnel, trial coordinators, or researchers), or in publication of the
results, that make the estimate of a treatment effect deviate from its true value.
Systematic errors are difficult to detect and cannot be analyzed statistically, 
but can be reduced by using randomization, treatment concealment, blinding, 
and standardized study procedures.

Confidence intervals

A range of values within which the ‘true’ population parameter (eg, mean,
proportion, treatment effect) is likely to lie. Usually 95% confidence intervals are
quoted which implies there is 95% confidence in the statement that the ‘true’
population parameter will lie somewhere between the lower and upper limits. 

Confounding

A situation in which a variable (or factor) is related to both the study variable and
the outcome so that the effect of the study variable on the outcome is distorted.
For example, if a study found that coffee consumption (study variable) is
associated with the risk of lung cancer (outcome), the confounding factor would
be cigarette smoking, since coffee drinking is often performed with the use of
cigarettes, which is the true risk factor for lung cancer. Thus we can say that the
apparent association of coffee drinking with lung cancer is due to confounding by
cigarette smoking (confounding factor). In clinical trials, confounding occurs
when a baseline characteristic (or variable) of patients is associated with the
outcome but unevenly distributed between treatment groups. As a result, the
observed treatment difference from the unadjusted (univariate) analysis can be
explained by the imbalanced distribution of this variable. 
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Correlation coefficient (r)

A measure of the linear association between two continuous variables. The
correlation coefficient varies between –1.0 and +1.0. The closer it is to 0, the
weaker the association. When both variables go in the same direction (eg, height
and weight) r has a positive value between 0 and 1.0 depending on the strength of
the relationship. When the variables go in opposite directions (eg, left ventricular
function and life-span) r has a negative value between 0 and –1.0, depending on
the strength of this inverse relationship. 

Covariates

Generally used as an alternative name for explanatory variables in the regression
analysis but more specifically referring to variables that are not of primary interest
in an investigation. Covariates are often measured at baseline in clinical trials
because it is believed that they are likely to affect the outcome variable and
consequently need to be included to estimate the adjusted treatment effect.

Descriptive/inferential statistics

Descriptive statistics are used to summarize and describe data collected in a study.
To summarize a quantitative (continuous) variable, measures of central location
(ie, mean, median, mode) and spread (eg, range and standard deviation) are often
used, whereas frequency distributions and percentages (proportions) are usually
used to summarize a qualitative variable. Inferential statistics are used to make
inferences or judgments about a larger population based on the data collected
from a small sample drawn from the population. A key component of inferential
statistics is hypothesis testing. Examples of inferential statistical methods are the
t-test and regression analysis. 

Endpoint

A clearly defined outcome associated with an individual subject in clinical
research. Outcomes may be based on safety, efficacy, or other study objectives 
(eg, pharmacokinetic parameters). An endpoint can be quantitative (eg, systolic
blood pressure, cell count), qualitative (eg, death, severity of disease), or time-to-
event (eg, time to first hospitalization from randomization).
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Hazard ratio 

In survival analysis, the hazard (rate) represents an instantaneous event rate
(incidence rate) at a certain time for an individual who has not experienced an
event at that time. A hazard ratio compares two hazards of having an event
between two groups. If the hazard ratio is 2.0, then the hazard of having an event
in one group is twice the hazard of having an event in the other group. The
computation of the hazard ratio assumes that the ratio is consistent over time
(proportional hazards assumption). 

Hypothesis testing or significance testing

A statistical procedure for assessing whether an observed treatment difference
was due to random error (chance) by calculating a P-value using the observed
sample statistics such as mean, standard deviation, etc. The P-value is the
probability that the observed data or more extreme data would have occurred 
if the null hypothesis (ie, no true difference) were true. If the calculated P-value
is a small value (eg, <0.05), the null hypothesis is then rejected and we say that
there is a statistically significant difference.

Intention-to-treat analysis

A method of data analysis based on the intention to treat a subject (ie, the treatment
regimen a patient was assigned at randomization) rather than the actual treatment
regimen he received. As a consequence, subjects allocated to a treatment group
are followed up, assessed, and analyzed as members of that group regardless of
their compliance to that therapy or the protocol, irrespective of whether they later
crossed over to another treatment group, or whether they discontinued treatment.

Kaplan–Meier estimate and survival curve 

A survival curve shows an estimate of the fraction of patients who survive over 
the follow-up period of the study without an event of interest (eg, death). 
The Kaplan–Meier estimate is a simple way of computing the survival curve,
taking into account patients who were lost to follow-up or any other reasons for
incomplete results (known as censored observations). It usually provides a
staircase graph of the fraction of patients remaining free of event over time.

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 456



Clinical Trials: A Practical Guide  ■❚❙❘

457

Meta-analysis

The systematic review and evaluation of the evidence from two or more
independent studies asking the same clinical question to yield an overall answer
to the question.

Normal distribution

A bell-shaped symmetric distribution for a continuous variable with the highest
frequency at a mean value and the lowest frequency further away from this mean
value. A normal distribution can be completely described by two parameters:
mean (μ) and variance (σ2). In the special case of μ = 0 and σ2 = 1, it is called the
standard normal distribution.

Number needed to treat (NNT)

This term is often used to describe how many patients would need to be given a
treatment to prevent one event. It is determined from the absolute difference
between one treatment and another. For example, in a randomized study, a group
receiving treatment A had a death rate of 12.5% and a group on treatment B 
had a death rate of 15.0% in groups matched for size and length of follow-up.
Comparing the two treatments there was an absolute risk reduction of 
15% – 12.5% = 2.5% for treatment A. From this we can derive that the NNT 
(= 1/0.025) is 40. This means 40 patients need to be given treatment A rather than
treatment B to prevent one additional death. 

Odds ratio (OR) and risk ratio (RR)

These terms compare the probability of having an event between two groups
exposed to a risk factor or treatment. The risk ratio (RR) is the ratio of the
probability of occurrence of an event between two groups. The odds ratio (OR) is
the ratio of patients with and without an event in each group. For example, if the
number of deaths in the treatment and control arms (both of sample size 100) of
a randomized study are 50 and 25 respectively, the RR = (50/100) / (25/100) = 2.
The treatment group has a 2-fold relative risk of dying compared with the control
group. The OR = (50/50) / (25/75) = 3, indicating that the odds of death in the
treatment arm is 3-fold that of the control arm. 

R519_ClinTrials_13.qxd  18/11/05  11:19  Page 457



❘❙❚■ Glossary

458

Per-protocol analysis

A method of analysis in which only the subset of subjects who complied
sufficiently with the protocol are included. Protocol compliance includes exposure
to treatment, availability of measurements, correct eligibility, and absence of any
other major protocol violations. This approach contrasts with the more
conservative and widely accepted ‘intention-to-treat’ analysis.

Power

The probability of rejecting the null hypothesis (eg, no treatment difference) 
when it is false. It is the basis of procedures for calculating the sample size
required to detect an expected treatment effect of a particular magnitude.

Random error

An unpredictable deviation of an observed value from a true value resulting from
sampling variability. It is a reflection of the fact that the sample is smaller than the
population; for larger samples, the random error is smaller, as opposed to systematic
errors (bias) that keep adding up because they all go in the same direction. 

Regression analyses

Methods of explaining or predicting outcome variables using information from
explanatory variables. Regression analyses are often used in clinical trials to
estimate the adjusted treatment effect taking into account differences in baseline
characteristics, and in epidemiological studies to identify prognostic factors while
controlling for potential confounders. Commonly used regression models include
linear, logistic, and Cox regression methods.

Risk factor

A risk factor can be defined as anything in the environment, personal characteristics,
or events that make it more or less likely one might develop a given disease, 
reach an adverse event, or experience a change in health status. For example,
raised cholesterol is a risk factor for heart attacks.
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Standard error

A measure of the random variability of a statistic (eg, mean, proportion, treatment
effect) indicating how far the statistic is likely to be from its true value. 
For example, standard error of the mean (SEM) indicates uncertainty of a single
sample mean (X) as an estimate of the population mean (μ). A smaller SEM
implies a more reliable estimate of the population mean. Standard error can be
used to calculate a confidence interval of an estimated population parameter. 
The smaller the standard error, the narrower the confidence interval, and the
more precise the point estimate of the population parameter.

Treatment effect

An effect attributed to a treatment in a clinical trial, often measured as the
difference in a summary measure of an outcome variable between treatment
groups. Commonly expressed as a difference in means for a continuous outcome,
a risk difference, risk ratio, or odds ratio for a binary outcome, and a hazard ratio
for a time-to-event outcome. 

Univariate/multivariate analysis 

The term variate refers to the term variable. A univariate analysis examines the
association between a single variable and an outcome variable (correctly called 
a bivariate analysis), for example, age and occurrence of stroke. In a multivariate
analysis, associations between many variables are examined simultaneously. 
In particular, multivariate regression analysis can be used to assess the relative
importance and contribution of each predictor variable to the outcome variable.
For example, a multivariate logistic regression can be undertaken to identify the
most important prognostic factors among several risk factors (eg, age, sex, systolic
blood pressure, and cholesterol level) that predict the occurrence of stroke.
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3TC lamivudine 
ACE angiotensin-converting enzyme
ALLHAT Anti-hypertensive and Lipid-Lowering Treatment 

to Prevent Heart Attack Trial 
ANCOVA analysis of covariance
ANOVA analysis of variance
ANZHFG Australia-New Zealand Heart Failure Group
APC activated protein C
AUC area under the curve
AWESOME Angina With Extremely Serious Operative 

Mortality Evaluation
BBB bundle branch block
BHAT Beta-blocker Heart Attack Trial
bpm beats per minute
Ca calcium
CABG coronary artery bypass graft
CAD coronary artery disease
CAL chronic airways limitation
CANDLE Candersartan versus Losartan Efficacy
CAP community-acquired pneumonia
CARET Beta-Carotene and Retional Efficacy Trial
CAST Cardiac Arrhythmia Suppression Trial
CEC clinical events committee
CESAR Conventional Ventilation or Extra Corporeal Membrane

Oxygenation for Severe Adult Respiratory Failure
CF cystic fibrosis
CF-WISE Withdrawal of Inhaled Steroids Evaluation Study 

in Patients with Cystic Fibrosis
CHARM Candesartan in Heart failure – Assessment of Reduction

in Mortality and morbidity
CHF chronic heart failure
CI confidence interval
CIBIS Cardiac Insufficiency Bisoprolol Study
CIBIS II Cardiac Insufficiency Bisoprolol Study II
CONSORT Consolidated Standards of Reporting Trials
CRASH Corticosteroid Randomization After Significant 

Head Injury
CRF case record form
CRT cluster randomized trial
CURE Clopidogrel in Unstable Angina to Prevent 

Recurrent Events
D4T stavudine 
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DBP diastolic blood pressure
DDI didanosine 
DSMB data and safety monitoring board
DMSC data and safety monitoring committee
ECG electrocardiogram
EF error factor
EFV efavirenz 
EUCTD EU Clinical Trials Directive
FDA Food and Drug Administration
FEV

1
forced expiratory volume in 1 second

GISSI Gruppo Italiano per lo Studio della Streptochinasi
nell’Infarto Miocardico 

GRACE Global Registry of Acute Coronary Events
GUSTO-IV Global Use of Strategies to Open Occluded 

Coronary Arteries
HAART highly active anti-retroviral therapy
HOPE Heart Outcomes Prevention Evaluation
hosp hospitalization
HRT hormone replacement therapy
ICC intra-cluster correlation coefficient
ICH The International Conference on Harmonisation 

of Technical Requirements for Registration 
of Pharmaceuticals for Human Use

ICH-GCP The International Conference on Harmonisation
guidelines for Good Clinical Practice

ICS inhaled corticosteroids
IDV indinavir
IMAGES Intravenous Magnesium Efficacy in Stroke 
IMS intravenous magnesium sulfate
IMP investigational medicinal product
IQR interquartile range
IRB institutional review board
ISIS-2 Second International Study of Infarct Survival
ISIS-4 Fourth International Study of Infarct Survival
ITT intention-to-treat
KM Kaplan–Meier
LLQ lower limit of quantitation
LOCF last observation carried forward
MAGPIE Magnesium Sulphate or Placebo for Women 

with Pre-Eclampsia
MAR missing at random
MCAR missing completely at random
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MDC Metoprolol in Dilated Cardiomyopathy Trial
MERIT-HF Metoprolol CR/XL (controlled release [AstraZeneca’s

Toprol XL]) Randomized Intervention Trial in 
Heart Failure

MHRA Medicines and Healthcare Products Regulatory Agency
MI myocardial infarction 
MNAR missing not at random
NA not applicable
NFV nelfinavir 
NYHA New York Heart Association
OC oral captopril
OM oral mononitrate
OR odds ratio
ORACLE Broad Spectrum Antibiotics for Preterm, Prelabour

Rupture of Fetal Membranes
OSIRIS Open Study of Infants at High Risk of or with 

Respiratory Insufficiency – the Role of Surfactant 
P P-value
P phosphorus
PBC primary biliary cirrhosis
PCI percutaneous coronary intervention
PCI-CURE Percutaneous Coronary Intervention and Clopidogrel in

Unstable Angina to Prevent Recurrent Ischemic Events
PD pharmacodynamic
PI principal investigator
PK pharmacokinetic
PP per-protocol
PRAIS-UK Prospective Registry of Acute Ischemic Syndromes 

in the United Kingdom
PRECISE Prospective Randomized Evaluation of Carvedilol 

in Symptoms and Exercise
PROMIS-UK Prospective Registry of Outcomes and Management 

in Acute Ischemic Syndromes in the United Kingdom
PUFA polyunsaturated fatty acids
QALYs quality-adjusted life-years
r ritonavir
RALES Randomized Aldactone Evaluation Study
RCT randomized controlled trial
RITA Randomized Intervention Trial of Angina
RITA 3 Noninvasive Versus Invasive (Angiography) in Patients

with Unstable Angina or Non-Q Wave Infarct
RR risk ratio/relative risk
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SAQ saquinavir
SBP systolic blood pressure
SD standard deviation
SE standard error
SEM standard error of the mean
SMO site management organization
Syst-Eur Systolic-Hypertension-Europe
TARGET Do Tirofiban and ReoPro Give Similar Efficacy 

Outcomes Trial 
TB tuberculosis
TMC Tacrolimus Versus Microemulsified Cyclosporin 

in Liver Transplantation
US Carvedilol US Carvedilol Heart Failure Study Group
ZDV zidovudine
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A

abbreviations, protocol development, 26

abstract, reports, 367–368

adaptive randomization procedure

(minimization), 72–73

administrative considerations, 

protocol development, 32

allocated treatment, CONSORT statement, 371

allocation concealment, 9

analysis of covariance (ANCOVA), 291

analysis of variance (ANOVA), 213

area under the curve

calculation, bioequivalence trials, 122, 122, 124

normal distribution see normal distribution

repeated measurements, 322, 324–325

ascertainment (observer) bias, 60–61

asterisks, tables, 404

AUC
0–t

, bioequivalence trials, 122, 122

B

bar charts, 171, 410–411, 411, 423

baseline data presentation see reports/reporting

baseline variables adjustment, regression

analysis, 282

Beta-blocker Heart Attack Trial (BHAT), 

early trial termination, 360–361

Beta-Carotene and Retinol Efficacy Trial, 

early trial termination, 361

between-subject comparisons, crossover 

clinical trials, 95

between-subject variability, equivalence 

trials, 115–116

bias, 55–64

cluster randomized trials, 147, 147–148

definition, 5, 56

minimization, 66

see also randomization

observer (ascertainment) bias, 61–62

post randomization exclusions, 62

publication see publication bias

selection bias see selection bias

study management bias see study

management bias

types, 57

biocreep, 135

bioequivalence trials, 115, 119–130

basic designs, 126–127, 127

definition, 114, 120

evaluation, 127–129

confidence interval calculation, 

127–129, 128, 128

Latin square design, 126–127, 127

pharmacokinetics, 120–121, 121

AUC
0–∞ 

, 124

AUC
0–t 

, 122, 122

calculation, 122–126

C
max

, 122

λ, 123–124, 124

sampling period, 125–126, 126

sampling times, 125

T
1/2

, 123–124, 124

T
max

, 122

blank cells, tables, 404

blinding, 9, 60–61, 75–80

achieving of, 61

assessment, 80

coding of drugs, 79

definition, 76

necessity of, 76

types, 77–79

double-blinded studies, 60, 78

open (unblinded) studies, 77

single-blinded studies, 60, 77–78

triple-blinded studies, 60–61, 78–79

unblinding studies, 79

block randomization, 68–70, 69

Bonferroni correction, 333–334

box plots, 174, 174, 414–416, 416, 423

C

Candesartan in Heart failure – Assessment 

of Reduction in Mortality and morbidity

(CHARM), 7–13

allocation concealment, 9

‘blinding,’ 9

conduct of, 9

design, 8

endpoints, 7–8

final data analysis, 10–11

interim monitoring, 10

Note: Page numbers in italics refer to tables or boxed material. Page numbers 
in bold refer to figures. vs indicates a comparison.
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objectives, 7–8

patient population, 8

patient selection, 48, 51, 51–52

regression result interpretation, 247–248

result interpretation, 248

sample size calculation, 9

study design, 8

trial reporting, 11–12

Cardiac Arrythmia Suppression Trial (CAST),

surrogate endpoints, 43

‘carryover effects,’ crossover trials, 97

case record form (CRF), 34

case series studies, 18

case studies, 18

CAST (Cardiac Arrythmia Suppression Trial),

surrogate endpoints, 43

categorical variables, 172

centers, 3

patient selection, 49–50

selection, multicenter trials, 161

single-center, 3

CF-WISE (Withdrawal of Inhaled Steroids

Evaluation Study in Patients with Cystic

Fibrosis), 71

CHARM see Candesartan in Heart failure –

Assessment of Reduction in Mortality and

morbidity (CHARM)

children, 52

Chi-squared (χ2) test, 222–224, 232

assumptions, 224

calculation, 223

critical values, 224

chronic airways limitation (CAL) trial, 198–200

raw data, 199

statistics, 199

clarity, CONSORT statement, 371

clinical equivalence trials, 115

definition, 114

clinical event review committee, 

protocol development, 35

Clopidogrel in Unstable Angina to Prevent

Recurrent Events (CURE), 40

cluster effect, cluster randomized trials, 146

cluster randomized trials, 141–151

advantages, 143, 149, 149

analysis, 146–147

bias, 147, 147–148

definition, 3

design, 142–144

cluster effect, 142–143

confounding, 143–144

selection bias, 143

ethical issues, 148–149

example, 144, 145

limitations, 149, 149

randomization units, 143

reporting, 148

sample size, 144–145

C
max

, bioequivalence trials, 122

coherence, CONSORT statement, 371

column chart, 412

comparison

means see means, comparison of

proportions see proportions, comparison of

complete crossover clinical trials, 94

compliance, factorial design, 111

complicated factorial design, 109–110

composite endpoints, 40–42

advantages, 41

limitations, 41–42

multiplicity, 336

confidence intervals

calculation, bioequivalence trials, 

127–129, 128, 128

definition, 454

statistical significance, 404

tables, 403

confirmatory trial, 4

confounding, 5–6, 295–304, 297

causes, 297–298

cluster randomized trials, 143–144

control

analysis, 301–302

study design, 300–301

critical appraisal of reports, 431–432

definition, 296

detection of, 298–299

non-treatment causation assessment, 299

outcome predictor assessment, 299, 299

treatment group association, 298, 298

evaluation, 299–300

example, 297–298

see also hormone replacement trial

interaction vs, 297–298, 303

negative, 300

positive vs, 296

positive, 300

negative vs, 296
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stratified randomization method, 300

Consolidated Standards of Reporting Trials

(CONSORT), 11

cluster randomized trials, 148

CONSORT see Consolidated Standards 

of Reporting Trials (CONSORT)

coordinating team, multicenter trials, 156–157

correlation coefficient, definition, 454

Corticosteroid Randomization After Significant

Head Injury (CRASH), 155

cost

as endpoint measure, 44

factorial design, 110

multicenter trials, 162

covariates, 287–294

adjusted, 290–291

analyses, 288

unadjusted hazard ratios vs, 290

advantages, 292

example, 288–290

see also primary biliary cirrhosis trial

imbalance avoidance, 293

limitations, 292

linear regression model, 292

logistic regression, 292

methods, 291–292

planning, 293

rationale, 290–291

stratified analysis, 292

unadjusted analyses, 288

adjusted vs, 290

Cox regression model, 11, 292

crossover clinical trials, 91–100

between-subject comparisons, 95

classification, 94–95

complete, 94

definition, 3, 92

example, 92–93, 93, 93–94

high-order, 95

incomplete, 94

interaction, 315

limitations, 96–98

parallel studies vs, 95–96

parallel trials vs, 95, 96

treatment-by-period, 315

trial profile, 382, 382–383

two-sequence, two-period design, 94, 94

use of, 98

within-subject comparisons, 95

CURE (Clopidogrel in Unstable Angina 

to Prevent Recurrent Events), 40

D

data

analysis, 253–262

meta-analysis, 443

missing see missing data

review, subgroup analysis, 270

types, 167–184

definitions, 168–169

dependent variables, 169

examples, 169

independent variables, 169

survival data, 170

data and safety monitoring board (DSMB), 10

protocol development, 35

Declaration of Helsinki, 24

DerSimonian-Laird analysis, 447, 448

determining diagnostic models, regression

analysis, 283–284

discussion section, 371

reports, 367

disease status, patient selection, 51–52

dose-response curve, 3

Do Tirofiban and ReoPro Give Similar Efficacy

Outcomes Trial (TARGET), 116

dot plots, 412–413, 414

double-blind studies, 30, 78

E

early trial termination, 360–361

effect modification, definition, 306

effect sizes, reporting, 372

eligibility criteria, 30–31

patient selection, 50–51, 51

endpoints, 37–46

choice of, 39

composite see composite endpoints

death as, 39–40

definition, 38, 454

health-economic, 43–45

advantages, 44

limitations, 44–45

primary, 38

protocol development, 31

secondary, 38

surrogate, 42–43

time to death, 39–40
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types, 38–39

enrolment process, protocol development, 31

equivalence trials, 4, 113–119

between-subject variability, 115–116

definition, 114

design issues, 115–116

features, 117

purposes, 114

result interpretation, 116–117

types, 115

bioequivalence see bioequivalence trials

clinical equivalence see clinical

equivalence trials

noninferiority studies see noninferiority

trials

within-subject variability, 115–116

ethics

approval, multicenter trials, 160–161

cluster randomized trials, 148–149

patient selection, 52–53

protocol development, 32

EU Clinical Trials Directive (EUCTD), 24

executive committee, protocol development, 35

expected event rate calculation, 83

exploratory trial, 4

external validity

definition, 48

report interpretation, 368

F

facilitating collaboration, multicenter 

trials, 157–159

factorial design, 101–112

advantages, 110–111

analysis, 105–106, 106

compliance, 111

complicated, 109–110

cost, 110

definition, 102

example, 102–103, 103

incomplete/partial, 109

interactions, 110–111

intervention number, 107

limitations, 111

notations, 108

randomization, 104

sample size, 104–105, 110

treatment interaction, 105–106

trial profile, 381

types, 106–110

unbalanced, 109

use of, 103–104

factorial trials, definition, 3

false-negative results (type II error) see type II

(beta) errors

figures, 407–425

example, 409, 409, 410

graphs, 408–409, 410–424

bar charts, 410–411, 411, 423

box plots, 414–416, 416, 423

column chart, 412

dot plots, 412–413, 414, 423

forest plots, 421–423, 422, 423

funnel plots, 423, 424, 444

histograms, 416–418, 417, 423

line graphs, 418–420, 420, 423

pie charts, 411–412, 413, 423

scatter plots, 418, 419, 423

spaghetti plots, 420, 421

stem and leaf plots, 413–414, 415, 423

three variables, 423, 424

Fisher’s exact test, 225

fixed-effects model, meta-analysis, 445, 445–446

follow-up

protocol development, 31

tables, 401

footnotes, tables, 402

forest plots, 421–423, 422, 423

frequency, definition, 170

funnel plots, 423, 424, 444

G

Gaussian distribution see normal distribution

generalizability, definition, 48

GISSI see Gruppo Italiano per lo Studio della

Streptochinasi nell’Infarto Miocardico (GISSI)-

Prevenzione trial

Global Registry of Acute Coronary Events

(GRACE), 278–279

graphs see figures

Gruppo Italiano per lo Studio della

Streptochinasi nell’Infarto Miocardico 

(GISSI)-Prevenzione trial, 106, 309–311, 

311, 311–313

data, 306

logistic regression model, 312

primary endpoint rate, 312
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H

hazard function, definition, 279

hazard ratio

adjusted vs unadjusted, 290

two-arm trial, 250

health-economic endpoint see endpoints

high-order crossover trials, 95

histograms, 171, 175, 409, 416–418, 417, 423

hormone replacement trial, 297–298

data, 297

sample selection, 297

hypothesis testing see significance tests

I

incidence rates, two-arm trial, 249–250

incomplete crossover trials, 94

incomplete factorial design, 109

institutional review boards, 160

intention-to-treat analysis (ITT), 62, 255–263

bias control, 62

definition, 10, 256–257, 454

example, 256–257, 257, 260–261

trial profile, 256

see also pre-eclampsia study; vitamin A

supplementation trial

implementation, 262

justification, 257–258

limitations, 258–259

per-protocol analysis vs, 259

reporting, 262, 372

interaction testing, 305–316

classification, 307–308

confounding vs, 303

definition, 306

effect modification, 306

evaluation, 308

examples, 306, 311–313

crossover trials, 315

multicenter trials, 313–314, 314

treatment-by-center, 313–314, 314

treatment-by-period, 315

see also Gruppo Italiano per lo Studio

della Streptochinasi nell’Infarto

Miocardico (GISSI)-Prevenzione trial

factorial design, 110–111, 111

linear regression model, 309–311, 310

qualitative, 307–308, 308

quantitative, 307–308, 308, 310, 314

subgroup analysis, 269

timing, 306

intercept, definition, 276

interim analyses

multicenter trials, 161

multiplicity, 333, 337

interim monitoring, 353–362

Candesartan in Heart failure – Assessment

of Reduction in Mortality and morbidity

(CHARM), 10

definition, 354

early trial termination, 360–361

procedures, 355

purposes, 354

statistical methods, 356, 356–360, 357

O’Brien-Fleming analysis, 358, 359, 359

Pocock analysis, 358, 359

usage, 354–355

internal validity, report interpretation, 368

International Conference on Harmonization

guidelines for Good Clinical Practice 

(ICH-GCP), 24

introductions, 370

reports, 367

inverse normal plot (quantile-quantile plot),

normal distribution assessment, 183

investigators, patient selection, 49–50

ITT see intention-to-treat analysis (ITT)

K

Kaplan-Meier plot, 239–242, 240, 241, 398

definition, 456

limitations, 242

by treatment group, 241

L

λ, bioequivalence trials, 123–124, 124

landmark study, 3

last observation carried forward, bias control, 62

Latin square design, 126–127, 127

linear regression, multiple see regression analysis

linear regression model, 292, 423

line graphs, 418–420, 420

literature search, meta-analysis, 442

logistic regression see regression analysis

log-rank test, 242–244, 244

limitations, 244

survival curves, 242–244
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M

main clinical effect, definition, 309

Mann-Whitney (two-sample Wilcoxon rank-sum)

test, 210–212, 212, 214

maximum, repeated measurements, 322–323, 323

means

comparison of, 197–216

example, 198–200

see also chronic airways limitation

(CAL)

multiple group comparisons, 213

two-sample Wilcoxon rank-sum 

(Mann-Whitney) test, 210–212, 212, 214

two-sample Z-test, 210, 214

see also t-tests

definition, 172

repeated measurements, 321–322, 322

median, definition, 172

Medicines and Healthcare Products Regulatory

Agency (MHRA), 25

meta-analysis, 86, 439–451

aims, 440

data extraction and quality assessment, 443

definition, 440

examples, 441, 446, 448

fixed-effects model, 445, 445–446

limitations/concerns, 449–450

literature search, 442

objectives, 449

publication bias, 443

random-effects model, 446–448, 447

statistics, 444, 445–449

study question formulation, 440

study selection, 442–443

methods section, 367, 370

minimization randomization, 72, 72–73

missing at random (MAR) data, 340–341

missing completely at random (MCAR) 

data, 340–341

missing data, 339–351, 340–341

common types, 340–341

datasets with, 347

datasets with missing values, 348, 349

dealing with, 342–344

analysis of all available data, 342

analysis of complete cases only, 342

comparison of techniques, 344–350

datasets with missing values, 346

last observation carried forward, 342–343

multiple imputation, 343–344

definition, 340

potential effects, 341

simulation model, 344–346

statistical analysis, 348–350, 350

missing not at random (MNAR) data, 340–341

dealing with, 344

mode, definition, 172

multicenter clinical trials, 153–163

advantages, 154–156

definition, 3–4, 154

examples, 155

financial considerations, 162

institutional review boards, 160

interaction, treatment-by-center, 313,

313–314, 314

‘life cycle’, 158

organization, 156–159

center selection, 161

coordinating team, 156–157

ethics approval, 160–161

facilitating collaboration, 157–159

interim analyses, 161

randomization, 161

publication policy, 162

recruitment targets, 159

timeline, 157

multiple endpoints, 332

multiple group comparisons, 213

multiple imputation

bias control, 62

missing data, 343–344

multiple linear regression see regression analysis

multiple treatments, 332

multiplicity, 329–338, 337

definition, 330

design incorporation, 333–335

outcome definition, 334–335

post trial manipulation, 335

P-value changes, 333–334

interim analyses, 333, 337

multiple endpoints, 332, 335–337, 337

combination, 335–336

composite endpoints, 336

multivariate approach, 336

specification, 335

multiple treatments, 332, 337

occurrence in clinical trials, 332–333

repeated measurements, 332–333
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significance effects, 331

subgroup analysis, 333, 337

multivariate analysis

definition, 455

multiplicity, 336

myocardial infarction trial, 218–219

contingency table, 219

statistical inferences, 221

N

negative confounding, 300

negative trials, critical appraisal of reports, 432–433

negative values, tables, 403

non-ignorable missing data, 340–341

noninferiority trials, 4, 116, 131–140

analysis, 137–138

definition, 114, 132

example, 132, 133, 134, 136–137, 138, 138, 139

features, 117

margin choice, 134

biocreep, 135

patient population, 138–139

result interpretation, 116–117

sample size calculation, 135–137, 136

use of, 133–134

normal distribution, 175–184, 176

area under the curve calculation, 179–182

lower tail, 181

two sided symmetric tails, 181–182

upper tail, 179, 180, 180

within user defined range, 181

assessment, 182–184

inverse normal plot (quantile-quantile

plot), 182, 183

definition, 175–176

fitted curves, 175

histograms, 178

importance, 177–178

properties, 176–177

standard normal distribution, 178–179

number needed to treat (NNT), definition, 455

O

O’Brien-Fleming analysis, 358, 359, 359

odds ratio

definition, 455

two-arm trial, 228–229, 249

one sample t-test see t-tests

open (unblinded) studies, 77

outcome predictor identification, regression

analysis, 282

outcomes

CONSORT statement, 369

critical appraisal of reports, 433–435

definition, 454

protocol development, 31

tables, 401

P

paediatric trials, 52

paired t-test see t-tests

pancreatic cancer trial, 236

data, 237

log-rank test, 244

survival curves, 241–242

by treatment group, 241

survival data, analysis, 251

parallel design studies

crossover trials vs, 95–96

trial profile, 380, 381

parallel trials, definition, 92

partial factorial design, 109

patient population, noninferiority trials, 138–139

patient selection, 47–54

centers, 49–50

critical appraisal of reports, 430

disease status, 51–52

eligibility criteria, 50–51, 51

ethical issues, 52–53

example, 48

exclusion of eligible patients, 53

investigators, 49–50

paediatric trials, 52

source of, 49

‘period effect,’ crossover trials, 97–98

per-protocol analysis

definition, 456

intention-to-treat analysis vs, 259

pharmacodynamics, Phase II clinical trials, 3

pharmacokinetics

examples, 58, 59

Phase II clinical trials, 3

phases (of trials), 3

pie charts, 171, 411–412, 413, 423

placebo, 2, 10

Pocock analysis, 358, 358, 359

pooled odds ratio estimate, 445

population, significance tests, 186
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positive confounding, 300

post hoc analysis, subgroup analysis, 269–270

postmarketing study, 3

post randomization exclusions, bias, 62

power

calculation, 9

critical appraisal of reports, 433

sample size, 84

PRAIS- UK (Prospective Registry of Acute

Ischaemic Syndromes in the UK), 280

pre-eclampsia study, 256–257

analysis, 257

trial profile, 256

prerandomization run-in periods, reporting, 373

primary biliary cirrhosis trial, 288–290

adjusted vs unadjusted hazards ratios, 290

data, 289

primary endpoints, 38

tabulation, 394

primary hypothesis, protocol development, 29

procedures, protocol development, 31

prognostic factor identification, regression

analysis, 282–283

PROMIS (Prospective Registry of Outcomes and

Management in Acute Ischaemic Syndromes), 144

proportions, comparison of, 217–235, 232

endpoint comparison, 230–231, 231

example, 218–219

contingency table, 219

see also myocardial infarction trial

Fisher’s exact test, 225

statistical inferences, 219–222, 221

two-arm trial, 226–230, 229

odds ratio, 228–229, 232

odds ratio vs risk ratio, 230

risk difference, 226–230, 232

risk ratio, 226–227, 232

risk ratio vs odds ratio, 229

between two groups, 222–226

see also Chi-squared (χ2) test

two-sample Z-test, 225–226

Prospective Registry of Acute Ischaemic

Syndromes in the UK 

(PRAIS-UK), 280, 280–281

Prospective Registry of Outcomes and

Management in Acute Ischaemic Syndromes

(PROMIS), 144, 145

protocol development, 23–36

abbreviations, 26

administrative considerations, 32

background and rationale, 28–29

case record form (CRF), 34

definition, 24

eligibility criteria, 30–31

enrolment process, 31

ethics, 32

flow chart, 28

follow-up, 31

guideline implications, 25

intervention information, 29

investigational plan, 29, 29

key components, 26

objectives, 25, 29

outcome measures/endpoints, 31

primary hypothesis, 29

procedures, 31

protocol information page, 26

publication policy, 33

qualities of a good protocol, 25

randomization, 31

references, 34

regulatory requirements, 32

sample size, 31–32

secondary hypothesis, 29

statistics, 32

study timetable, 33

table of contents, 26, 27

treatments, 31

trial committees, 34–35

clinical event review committee, 35

data and safety monitoring board 

or committee, 35

executive committee, 35

steering committee, 35

trial design, 30

trial monitoring, 33

trial summary/synopsis, 28

writing, 24–25

publication bias, 62–63

bias, 62–63

meta-analysis, 443

reporting, 372

publication policy

multicenter trials, 162

protocol development, 33

P-values

multiplicity, 333–334

tables, 403
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Q

qualitative interaction, 307–308, 308

quality-adjusted life-years (QALYs), 

as endpoint measure, 44

quality assessment, meta-analysis, 443

quantitative interaction, 307–308, 308, 310

R

RALES (Randomized Aldactone Evaluation

Study), 374

random-effects model, meta-analysis, 446–448, 447

random error, 6–7

false-positive rate, 6

sampling error, 6

randomization, 65–74

bias minimization, 66

common techniques, 67–73

block, 68–70, 69

minimization, 72, 72–73

simple, 67–68, 68

stratified, 70–71, 71

CONSORT statement, 369

factorial design, 104

multicenter trials, 161

protocol development, 31

reporting, 372

selection bias, 57

technique choice, 66–67

use, 66

Randomized Aldactone Evaluation Study

(RALES), 374

randomized clinical trials (RCTs), 1–13

center number, 3–4

definition, 1

example, 7–13

see also Candesartan in Heart failure –

Assessment of Reduction in Mortality

and morbidity (CHARM)

reliability, 4–7

types, 2–4

range, definition, 173

rate of change, repeated measurements, 

322, 326, 327

recruitment rate, critical appraisal of reports,

430–431

recruitment targets, multicenter trials, 159

references

protocol development, 34

tables, 402

regression analysis, 6, 273–285

baseline variables adjustment, 282

classification, 275

definition, 456

determining diagnostic models, 283–284

hazards regression, 279–281

example, 280, 280–281

logistic regression, 277–279, 278, 292

example, 277, 278–279

Gruppo Italiano per lo Studio della

Streptochinasi nell’Infarto Miocardico

(GISSI)-Prevenzione trial, 312

models, 281–284

multiple linear regression, 275–277

assumptions and interpretations, 284

example, 276, 277

outcome predictor identification, 282

prognostic factor identification, 282–283

prognostic model establishment, 283

uses of, 281–284

regression coefficient, definition, 276

regression lines, repeated measurements, 327

regression modeling, confounding, 302

regulatory changes, reporting, 372–373

regulatory requirements, 24

protocol development, 32

relative frequency, definition, 170

relative risk, definition, 455

relevance, reports, 429

repeated measurements, 317–328

analysis methods, 319–321

predefined time point, 319

statistical models, 320

summary measures see below

time-by-time analysis, 319–320

data considerations, 319

definitions, 318

example, 318

mean, 323

multiplicity, 332–333

summary measure approach, 320–326, 322

area under the curve, 324–325

maximum, 322–323, 323

mean, 321–322, 322, 323

rate of change, 326, 327

regression lines, 327

time to maximum, 322, 323

variable range, 322, 325

see also statistics
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reports/reporting, 363–452, 435

baseline data, 385–390

components, 386–388

example data, 387

imbalances, 389

importance, 386

significance tests, 388–389

CONSORT statement, 369–371

allocated treatment, 371

coherence and clarity, 371

defined outcome, 369

randomization, 369

sample size, 369

contents, 370–371

critical appraisal of, 427–437

format of randomized trial reports, 435

formats, 435

implications, 436

influence of patient selection, 430

limitations, 436

negative trials, 432–433

outcome measures, 433–435

power and sample size, 433

publication type, 428–429

quality of evidence guidelines, 428

recruitment rate and timing, 430–431

relevance, 429

systematic bias and confounding, 431–432

figures see figures

interpretation, 368–369

press releases, 373–374

problem areas, 372–373

structure, 366–368

tables see tables

trial profiles see trial profile

types of report, 366

residual, definition, 276

results section, 367, 370

risk difference, two-arm trial, 226–230, 249

risk factor, definition, 456

risk ratio

definition, 455

two-arm trial, 226–227, 249

rounding, tables, 402

S

sample, significance tests, 186

sample size, 81–87

calculation, 84, 85

cluster randomized trials, 144–145

CONSORT statement, 369

critical appraisal of reports, 433

definition, 82

determining factors, 82–83, 85

example, 83–85

expected event rate calculation, 83

null hypothesis rejection, 83

significance level determination, 83

study design, 83

subject dropout, 85

treatment effect detection, 83

type II error rate, 84

factorial design, 104–105, 110

methodologies, 87

negative results, 85–86

noninferiority trials, 135–137, 136

parallel trials vs crossover trials, 95, 96

power choice, 84

protocol development, 31–32

purpose, 82

treatment effect vs, 86

sampling period, 125–126, 126

sampling times, 125

scatter plots, 418, 419, 423

secondary endpoints, 38

secondary hypothesis, protocol development, 29

selection see patient selection

selection bias, 56–58

cluster randomized trials, 143

randomization, 57

sensitivity analysis, cluster randomized trials, 147

significance level determination, sample size 

and power, 83

significance tests, 185–195

baseline data presentation, 388–389

confidence intervals, 191–192, 193, 194

examples, 193–194

hypothesis testing, 186–191, 191

alternative hypothesis, 187

calculating test statistics, 187–188

determine P-value, 189–190

method choice, 187–188

null hypothesis, 186–187

significance level definition, 189

significance level specification, 188

statistical inference, 190

type I (alpha) errors, 190–191, 192

type II (beta) errors, 190–191, 192
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population, 186, 187

sample, 186, 187

significance threshold, subgroup analysis, 269

simple randomization, 67–68, 68

single-blinded studies, 77–78

single-center clinical trials, definition, 3–4

sources of erroneous results, 5

spaghetti plots, 420, 421

standard deviation, definition, 173

standard distribution, t-test distributions vs, 201

standard error, definition, 456

statistics, 165–252

cluster randomized trials, 146

confidence intervals see confidence intervals

data types see data

glossary, 452–456

meta-analysis, 444, 445–449

proportion comparison see proportions,

comparison of

protocol development, 32

significance tests see significance tests

variables see variables

see also repeated measurements

steering committee, protocol development, 35

stem and leaf plots, 413–414, 415, 423

‘stopping for efficacy,’ definition, 10

‘stopping for safety,’ definition, 10

stratification, confounding, 302

stratified analysis, 6, 292

stratified randomization method, 6, 70–71, 71, 300

study management bias, 58–59

pharmacokinetic profiles, 58, 59

study selection, meta-analysis, 442–443

study timetable, protocol development, 33

subgroup analyses, 265–272

data review, 270

definition, 266

example, 266, 268, 270

interaction testing, 269

limitations, 267, 267–269

patient imbalance, 268–269

solutions, 269–270

type I error, 268

multiplicity, 333, 337

planning, 270

post hoc analysis, 269–270

selection, 266–267

significance threshold adjustment, 269

uses, 267

superiority study, 4

definition, 114

surrogate endpoints see endpoints

survival analysis, definition, 456

survival data

analysis see below

data types, 170

survival data, analysis, 235–252

basic concepts, 236–238

censoring, 236, 237

hazard function, 238

survival function, 238

example, 236

see also Candesartan in Heart failure –

Assessment of Reduction in Mortality

and morbidity (CHARM); pancreatic

cancer trial

proportional hazards model, 245–248

assumptions, 245–247, 246

description, 245

results interpretation, 247–248, 248

survival curves, 239–242

Kaplan–Meier method 

see Kaplan-Meier plot

log-rank test see log-rank test

two-arm trial, 249–250

survivor function, definition, 279

systematic bias, critical appraisal of reports,

431–432

T

T
1/2

, bioequivalence trials, 123–124, 124

tables, 391–405

adjustments, 402

analysis methods, 402

asterisks, 404

blank cells, 404

complex, 394–396

confidence intervals, 403

construction, 400–404

descriptive statistics, 403

explanatory information, 401

figure combinations, 394–396

figures vs, 397–398

follow up, 401

footnotes, 402

heading, 401

information present, 400

instead of text, 396–397
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journal guidelines, 399–400

layout, 401

negative values, 403

numeric data, 402–403

outcomes, 401

primary trial endpoints, 394

P-value presentation, 403

references, 402

reported numbers, 402

rounding, 402

size, 400

standard table, 393, 393–394

timing in a trial, 398–399

titles, 401

totals, 401

two-dimensional comparisons, 394–396

units, 402

TARGET (Do Tirofiban and ReoPro Give

Similar Efficacy Outcomes Trial), 116

3 variable graphs, 423, 424

timeline, multicenter trials, 157

time to maximum, repeated measurements, 

322, 323

T
max

, bioequivalence trials, 122

treatment-by-center, multicenter trials, 

313, 313–314

treatment interaction, factorial design, 105–106

treatments, protocol development, 31

trial committees, protocol development 

see protocol development

trial design, 3

trial monitoring, protocol development, 33

trial profile, 377–384

components, 378–379, 379

definition, 378

examples, 380–383

medical journal practice, 383, 383–384

purpose, 379–380

2 × 2 factorial design, 381, 381–382

two-way crossover design, 382, 382–383

two-way parallel design, 381

trial termination, early, 360–361

triple-blinded studies, 78–79

t-tests

one-sample, 200–204, 214

critical values, 201–202, 203

degrees of freedom, 200–201

example, 202–204

paired, 204–207, 205, 206, 214

result reporting, 213

standard distribution vs, 201

two-sample, 207–208, 214

assumptions, 209

example, 208–209

two-sample Wilcoxon rank-sum (Mann-Whitney)

test, 210–212, 212, 214

two-sample Z-test, 210, 214, 225–226

type I (alpha) errors, 268

significance tests, 190–191, 192

type II (beta) errors, 84

significance tests, 190–191, 192

types, of clinical trials, 2

see also specific types

U

unbalanced factorial design, 109

unblinding studies, 79

uncontrolled trials, 15–21

advantages, 18–19, 20

case series studies, 18

case studies, 18

limitations, 19–20, 20

Phase I trials, 16–17

Phase II trials, 17–18

rationale for use, 16–18

univariate analysis, definition, 455

US Food and Drug Administration (FDA)

Regulations Relating to Good Clinical Practice

and Clinical Trials, 24

V

variables

categorical, 172

definitions, 168–169

dependent, 169

independent, 169

summaries of, 170–174, 171, 173, 174

see also specific presentations

vitamin A supplementation trial, 260–261

analysis, 261

trial profile, 260

W

washout period, definition, 52

Withdrawal of Inhaled Steroids Evaluation Study

in Patients with Cystic Fibrosis (CF-WISE), 71

within-subject comparisons, crossover clinical

trials, 95
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within-subject variability, equivalence trials, 115–116

Woolf analysis, 445, 448

worst case scenario analysis, bias control, 62

Z

Z-test, 232

one sample, 232

two-sample, 210, 214, 225–226
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